skip to main content


Title: Inside an asymptotically flat hairy black hole
A bstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair.  more » « less
Award ID(s):
2107939
NSF-PAR ID:
10322654
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract The gravitational dual to the grand canonical ensemble of a large N holographic theory is a charged black hole. These spacetimes — for example Reissner- Nordström-AdS — can have Cauchy horizons that render the classical gravitational dynamics of the black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit. 
    more » « less
  2. A bstract We study a family of four-dimensional, asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Surprisingly, the maximum charge for given mass is a nonsingular hairy black hole with nonzero Hawking temperature. The implications for Hawking evaporation are discussed. 
    more » « less
  3. null (Ed.)
    Charged black holes in anti-de Sitter space become unstable to forming charged scalar hair at low temperatures T < Tc. This phenomenon is a holographic realization of superconductivity. We look inside the horizon of these holographic superconductors and find intricate dynamical behavior. The spacetime ends at a spacelike Kasner singularity, and there is no Cauchy horizon. Before reaching the singularity, there are several intermediate regimes which we study both analytically and numerically. These include strong Josephson oscillations in the condensate and possible 'Kasner inversions' in which after many e-folds of expansion, the Einstein-Rosen bridge contracts towards the singularity. Due to the Josephson oscillations, the number of Kasner inversions depends very sensitively on T, and diverges at a discrete set of temperatures {Tn} that accumulate at Tc. Near these Tn, the final Kasner exponent exhibits fractal-like behavior. 
    more » « less
  4. Abstract It is well known that asymptotically flat black holes in generalrelativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governingstatic (spin 0,1,2)perturbations around black holes. The symmetries have a geometric origin: in the scalar case, they arise from the (E)AdS isometries of a dimensionally reduced black hole spacetime. Underlying the symmetries is a ladder structure which can be used to construct the full tower of solutions,and derive their general properties: (1) solutions that decay withradius spontaneously break the symmetries, and mustdiverge at the horizon;(2) solutions regular at the horizon respect the symmetries, andtake the form of a finite polynomial that grows with radius.Taken together, these two properties imply that static response coefficients — and in particular Love numbers — vanish. Moreover, property (1) is consistent with the absence of black holes with linear (perturbative) hair. We also discuss the manifestation of these symmetries in the effective point particle description of a black hole, showing explicitly that for scalar probesthe worldline couplings associated with a non-trivial tidal response and scalar hair must vanish in order for the symmetries to be preserved. 
    more » « less
  5. A bstract In two-derivative theories of gravity coupled to matter, charged black holes are self-attractive at large distances, with the force vanishing at zero temperature. However, in the presence of massless scalar fields and four-derivative corrections, zero-temperature black holes no longer need to obey the no-force condition. In this paper, we show how to calculate the long-range force between such black holes. We develop an efficient method for computing the higher-derivative corrections to the scalar charges when the theory has a shift symmetry, and compute the resulting force in a variety of examples. We find that higher-derivative corrected black holes may be self-attractive or self-repulsive, depending on the value of the Wilson coefficients and the VEVs of scalar moduli. Indeed, we find black hole solutions which are both superextremal and self-attractive. Furthermore, we present examples where no choice of higher-derivative coefficients allows for self-repulsive black hole states in all directions in charge space. This suggests that, unlike the Weak Gravity Conjecture, which may be satisfied by the black hole spectrum alone, the Repulsive Force Conjecture requires additional constraints on the spectrum of charged particles. 
    more » « less