skip to main content

Title: Survival of itinerant excitations and quantum spin state transitions in YbMgGaO4 with chemical disorder
Abstract A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a “spin-liquid-like” state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO 4 , a triangular lattice antiferromagnet with effective spin-1/2 Yb 3+ ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO 4 is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual κ 0 / T term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO 4 . These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO 4 .  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The spin- $$\frac{1}{2}$$ 1 2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We find that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu 4 (OH) 6 FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin order on the spin- $$\frac{1}{2}$$ 1 2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q  = 0 magnetic order. Partially Zn-substituted barlowite (Cu 3.44 Zn 0.56 (OH) 6 FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu 2+ impurities are above the percolation threshold for the interlayer lattice and they couple more strongly to the nearest kagome moment. This system is a unique playground displaying QSL, VBC, and spin order, furthering our understanding of these highly competitive quantum states. 
    more » « less
  2. Abstract

    Recently, Yb-based triangular-lattice antiferromagnets have garnered significant interest as possible quantum spin-liquid candidates. One example is YbMgGaO4, which showed many promising spin-liquid features, but also possesses a high degree of disorder owing to site-mixing between the non-magnetic cations. To further elucidate the role of chemical disorder and to explore the phase diagram of these materials in applied field, we present neutron scattering and sensitive magnetometry measurements of the closely related compound, YbZnGaO4. Our results suggest a difference in magnetic anisotropy between the two compounds, and we use key observations of the magnetic phase crossover to motivate an exploration of the field- and exchange parameter-dependent phase diagram, providing an expanded view of the available magnetic states in applied field. This enriched map of the phase space serves as a basis to restrict the values of parameters describing the magnetic Hamiltonian with broad application to recently discovered related materials.

    more » « less
  3. Abstract

    Understanding the interplay between the inherent disorder and the correlated fluctuating-spin ground state is a key element in the search for quantum spin liquids. H3LiIr2O6is considered to be a spin liquid that is proximate to the Kitaev-limit quantum spin liquid. Its ground state shows no magnetic order or spin freezing as expected for the spin liquid state. However, hydrogen zero-point motion and stacking faults are known to be present. The resulting bond disorder has been invoked to explain the existence of unexpected low-energy spin excitations, although data interpretation remains challenging. Here, we use resonant X-ray spectroscopies to map the collective excitations in H3LiIr2O6and characterize its magnetic state. In the low-temperature correlated state, we reveal a broad bandwidth of magnetic excitations. The central energy and the high-energy tail of the continuum are consistent with expectations for dominant ferromagnetic Kitaev interactions between dynamically fluctuating spins. Furthermore, the absence of a momentum dependence to these excitations are consistent with disorder-induced broken translational invariance. Our low-energy data and the energy and width of the crystal field excitations support an interpretation of H3LiIr2O6as a disordered topological spin liquid in close proximity to bond-disordered versions of the Kitaev quantum spin liquid.

    more » « less
  4. Abstract

    The evolution of quantum spin liquid states (QSL) of the anisotropic antiferromagnetic (AFM) Kitaev model with the [001] magnetic field by utilizing the finite‐temperature Lanczos method (FTLM) is investigated. In this anisotropic Kitaev model with and (K is the energy unit), due to the competition between anisotropy and magnetic field, the system emerges four exotic quantum phase transitions (QPTs) when and , while only two QPTs when . At these magnetic‐field tuning quantum phase transition points, the low‐energy excitation spectrums appear level crossover, and the specific heat, magnetic susceptibility and Wilson ratio display anomalies; accordingly, the topological Chern number may also change. These results demonstrate that the anisotropic interacting Kitaev model with modulating magnetic field displays more rich phase diagrams, in comparison with the isotropic Kitaev model.

    more » « less
  5. The search for topological systems has recently broadened to include random substitutional alloys, which lack the specific crystalline symmetries that protect topological phases, raising the question of whether topological properties can be preserved, or are modified by disorder. To address this question, we avoid methods that assumed at the outset high (averaged) symmetry, using instead a fully-atomistic, topological description of an alloy. Application to the (PbSe) 1−x (SnSe) x alloy reveals that topology survives in an interesting fashion: (a) spatial randomness removes the valley degeneracy (splitting ≥150 meV), leading to a sequential inversion of the split valley components over a range of compositions; (b) the absence of inversion lifts spin degenerates, leading to a Weyl semimetal phase without the need of an external magnetic field, an unexpected result, given that the alloy constituent compounds are inversion-symmetric. (a) and (b) underpin the topological physics at low symmetry and complete the missing understanding of possible topological phases within the normal-topological insulator transition. 
    more » « less