The Nutzotin basin of eastern Alaska consists of Upper Jurassic through Lower Cretaceous siliciclastic sedimentary and volcanic rocks that depositionally overlie the inboard margin of Wrangellia, an accreted oceanic plateau. We present igneous geochronologic data from volcanic rocks and detrital geochronologic and paleontological data from nonmarine sedimentary strata that provide constraints on the timing of deposition and sediment provenance. We also report geochronologic data from a dike injected into the Totschunda fault zone, which provides constraints on the timing of intra–suture zone basinal deformation. The Beaver Lake formation is an important sedimentary succession in the northwestern Cordillera because it provides an exceptionally rare stratigraphic record of the transition from marine to nonmarine depositional conditions along the inboard margin of the Insular terranes during mid-Cretaceous time. Conglomerate, volcanic-lithic sandstone, and carbonaceous mudstone/shale accumulated in fluvial channel-bar complexes and vegetated overbank areas, as evidenced by lithofacies data, the terrestrial nature of recovered kerogen and palynomorph assemblages, and terrestrial macrofossil remains of ferns and conifers. Sediment was eroded mainly from proximal sources of upper Jurassic to lower Cretaceous igneous rocks, given the dominance of detrital zircon and amphibole grains of that age, plus conglomerate with chiefly volcanic and plutonic clasts. Deposition was occurring by ca. 117 Ma and ceased by ca. 98 Ma, judging from palynomorphs, the youngest detrital ages, and ages of crosscutting intrusions and underlying lavas of the Chisana Formation. Following deposition, the basin fill was deformed, partly eroded, and displaced laterally by dextral displacement along the Totschunda fault, which bisects the Nutzotin basin. The Totschunda fault initiated by ca. 114 Ma, as constrained by the injection of an alkali feldspar syenite dike into the Totschunda fault zone. These results support previous interpretations that upper Jurassic to lower Cretaceous strata in the Nutzotin basin accumulated along the inboard margin of Wrangellia in a marine basin that was deformed during mid-Cretaceous time. The shift to terrestrial sedimentation overlapped with crustal-scale intrabasinal deformation of Wrangellia, based on previous studies along the Lost Creek fault and our new data from the Totschunda fault. Together, the geologic evidence for shortening and terrestrial deposition is interpreted to reflect accretion/suturing of the Insular terranes against inboard terranes. Our results also constrain the age of previously reported dinosaur footprints to ca. 117 Ma to ca. 98 Ma, which represent the only dinosaur fossils reported from eastern Alaska.
more »
« less
Earliest Jurassic U-Pb ages from carbonate deposits in the Navajo Sandstone, southeastern Utah, USA
Abstract New uranium-lead (U-Pb) analyses of carbonate deposits in the Navajo Sandstone in southeastern Utah (USA) yielded dates of 200.5 ± 1.5 Ma (earliest Jurassic, Hettangian Age) and 195.0 ± 7.7 Ma (Early Jurassic, Sinemurian Age). These radioisotopic ages—the first reported from the Navajo erg and the oldest ages reported for this formation—are critical for understanding Colorado Plateau stratigraphy because they demonstrate that initial Navajo Sandstone deposition began just after the Triassic and that the base of the unit is strongly time-transgressive by at least 5.5 m.y.
more »
« less
- Award ID(s):
- 1814051
- PAR ID:
- 10322787
- Date Published:
- Journal Name:
- Geology
- Volume:
- 47
- Issue:
- 11
- ISSN:
- 0091-7613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The San Diego Formation, Pico Formation, Careaga Sandstone, and Foxen Mudstone of southern California are thought to be late Pliocene to early Pleistocene; however, numerical ages have not been determined. Following assessment of diagenetic alteration via multiple methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), and minor elemental concentrations, we attempted to use strontium isotope stratigraphy to assign numerical ages. Using aragonitic fossils, we obtained ages of 2.0–1.85 Ma for the Careaga Sandstone and 2.0–1.75 Ma for the uppermost Foxen Mudstone, consistent with biostratigraphic work suggesting a Gelasian age for the Careaga Sandstone. Isotope ratios for aragonitic and calcitic fossils from the Pico Formation were poorly constrained, with the exception of one bed yielding ages of 5.1–4.3 Ma. Isotope ratios from the San Diego Formation were also inconsistent within beds, with the exception of two isolated outcrops that yielded ages of 5.0–4.5 Ma and 4.5–2.8 Ma, respectively. The age estimates for the Pico and San Diego Formations are older than most ages inferred from biostratigraphy. Noting that some aragonitic specimens from the San Diego Formation yielded isotope ratios indicative of ages as old as 19.4 Ma, we propose that some outcrops have been affected by diagenesis caused by groundwater flow through proximal granitic rocks and input from detrital sediment. Although we recommend that strontium isotope results for the Pico and San Diego Formations be interpreted with caution, the ages of the uppermost Foxen Mudstone and Careaga Sandstone can be confidently placed within the early Pleistocene.more » « less
-
Abstract Since the publication of 40Ar/39Ar dates from Cretaceous bentonites in the Western Interior Basin by J.D. Obradovich in 1993 and in Japan by J.D. Obradovich and colleagues in 2002, improvements in the 40Ar/39Ar method have included a shift to astronomically calibrated ages for standard minerals and development of a new generation of multi-collector mass spectrometers. Thus, the 40Ar/39Ar chronometer can yield results that are synchronous with U-Pb zircon dates and astrochronologic age models for Cretaceous strata. Ages determined by Obradovich have ± 2σ analytical uncertainties of ± 400 ka (excluding J value or systematic contributions) that have been used to discriminate stratigraphic events at ca. 1 Ma resolution. From among several dozen sanidine samples, 32 of which were dated by Obradovich in 1993, we present new multi-collector 40Ar/39Ar ages that reduce the average analytical uncertainties by nearly an order of magnitude. These new ages (where the uncertainties also include the contribution of the neutron fluence J value) include: Topmost Bentonite, Mowry Shale, Kaycee, Wyoming, USA, 97.52 ± 0.09 Ma Clay Spur Bentonite, Mowry Shale, Casper, Wyoming, 98.17 ± 0.11 Ma Arrow Creek Bentonite, Colorado Shale, Montana, USA, 99.12 ± 0.14 Ma Upper Newcastle Sandstone, Black Hills, Wyoming, 99.49 ± 0.07 Ma Middle Newcastle Sandstone, Black Hills, Wyoming, 99.58 ± 0.12 Ma Shell Creek Shale, Bighorn Basin, Crow Reservation, Wyoming, 99.62 ± 0.07 Ma Shell Creek Shale, Bighorn Basin, Greybull, Wyoming, 99.67 ± 0.13 Ma Shell Creek Shale, Bighorn Basin, Lander, Montana, 100.07 ± 0.07 Ma Muddy Sandstone, Wind River Basin, Wyoming, 101.23 ± 0.09 Ma Thermopolis Shale, Bighorn Basin, Wyoming, 101.36 ± 0.11 Ma Vaughn Member, Blackleaf Formation, Sweetgrass Arch, Montana, 102.68 ± 0.07 Ma Taft Hill Member, Blackleaf Formation, Sweetgrass Arch, Montana, 103.08 ± 0.11 Ma Base of the Skull Creek Shale, Black Hills, Wyoming, 104.87 ± 0.10 Ma Thermopolis Shale, Bighorn Basin, Wyoming, 106.37 ± 0.11 Ma A new U-Pb zircon age of 104.69 ± 0.07 Ma from the Skull Creek Shale at Dinosaur Ridge, Colorado, USA, is close to the new 40Ar/39Ar age of the Skull Creek Shale in the Black Hills, Wyoming, but 5 m.y. is missing in the unconformity between the Skull Creek Shale of the Black Hills and the overlying Newcastle Sandstone. Considering the average total uncertainties that include decay constant and standard age or tracer composition for the 40Ar/39Ar (± 0.19 Ma) and the U-Pb (± 0.13 Ma) ages does not alter this finding. Moreover, the lower Thermopolis Shale in the Bighorn Basin is 1.5 Ma older than the Skull Creek Shale in the Black Hills. The 100.07 ± 0.07 Ma Shell Creek Bentonite in Montana is close to the Albian–Cenomanian boundary age of 100.2 ± 0.2 Ma of Obradovich and colleagues from Hokkaido, Japan, and 100.5 ± 0.5 Ma adopted in the 2012 geological time scale of J.G. Ogg and L.A. Hinnov. Our findings indicate that correlations based on similarity of lithology, without independent radioisotopic ages or detailed biostratigraphic constraints, can be problematic or invalid. There is much more time missing in unconformities than has been previously recognized in these important, petroleum-bearing reservoir strata.more » « less
-
The Upper Jurassic Galice Formation, a metasedimentary unit in the Western Klamath Mountains, formed within an intra-arc basin prior to and during the Nevadan orogeny. New detrital zircon U-Pb age analyses (N = 11; n = 2792) yield maximum depositional ages (MDA) ranging from ca. 160 Ma to 151 Ma, which span Oxfordian to Kimmeridgian time and overlap Nevadan contractional deformation that began by ca. 157 Ma. Zircon ages indicate a significant North American continental provenance component that is consistent with tectonic models placing the Western Klamath terrane on the continental margin in Late Jurassic time. Hf isotopic analysis of Mesozoic detrital zircon (n = 603) from Galice samples reveals wide-ranging εHf values for Jurassic and Triassic grains, many of which cannot be explained by a proximal source in the Klamath Mountains, thus indicating a complex provenance. New U-Pb ages and Hf data from Jurassic plutons within the Klamath Mountains match some of the Galice Formation detrital zircon, but these data cannot account for the most non-radiogenic Jurassic detrital grains. In fact, the in situ Cordilleran arc record does not provide a clear match for the wide-ranging isotopic signature of Triassic and Jurassic grains. When compiled, Galice samples indicate sources in the Sierra Nevada pre-batholithic framework and retroarc region, older Klamath terranes, and possibly overlap strata from the Blue Mountains and the Insular superterrane. Detrital zircon age spectra from strata of the Upper Jurassic Great Valley Group and Mariposa Formation contain similar age modes, which suggests shared sediment sources. Inferred Galice provenance within the Klamath Mountains and more distal sources suggest that the Galice basin received siliciclastic turbidites fed by rivers that traversed the Klamath-Sierran arc from headwaters in the retroarc region. Thus, the Galice Formation contains a record of active Jurassic magmatism in the continental arc, with significant detrital input from continental sediment sources within and east of the active arc. These westward-flowing river systems remained active throughout the shift in Cordilleran arc tectonics from a transtensional system to the Nevadan contractional system, which is characterized by sediment sourced in uplifts within and east of the arc and the thrusting of older Galice sediments beneath older Klamath terranes to the east.more » « less
-
Abstract Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; southwestern United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposition with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this provenance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local basement uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and temporal patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrography, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth elemental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in western Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anomalously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochemistry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identification of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wanakah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin suggests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT.more » « less
An official website of the United States government

