skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Theoretical Perspective on Hyperdimensional Computing
Hyperdimensional (HD) computing is a set of neurally inspired methods for obtaining highdimensional, low-precision, distributed representations of data. These representations can be combined with simple, neurally plausible algorithms to effect a variety of information processing tasks. HD computing has recently garnered significant interest from the computer hardware community as an energy-efficient, low-latency, and noise-robust tool for solving learning problems. In this review, we present a unified treatment of the theoretical foundations of HD computing with a focus on the suitability of representations for learning.  more » « less
Award ID(s):
2100237 1826967
PAR ID:
10322828
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
72
ISSN:
1076-9757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Coding for visual stimuli in the ventral stream is known to be invariant to object identity preserving nuisance transformations. Indeed, much recent theoretical and experimental work suggests that the main challenge for the visual cortex is to build up such nuisance invariant representations. Recently, artificial convolutional networks have succeeded in both learning such invariant properties and, surprisingly, predicting cortical responses in macaque and mouse visual cortex with unprecedented accuracy. However, some of the key ingredients that enable such success—supervised learning and the backpropagation algorithm—are neurally implausible. This makes it difficult to relate advances in understanding convolutional networks to the brain. In contrast, many of the existing neurally plausible theories of invariant representations in the brain involve unsupervised learning, and have been strongly tied to specific plasticity rules. To close this gap, we study an instantiation of simple-complex cell model and show, for a broad class of unsupervised learning rules (including Hebbian learning), that we can learn object representations that are invariant to nuisance transformations belonging to a finite orthogonal group. These findings may have implications for developing neurally plausible theories and models of how the visual cortex or artificial neural networks build selectivity for discriminating objects and invariance to real-world nuisance transformations. 
    more » « less
  2. Hyperdimensional (HD) computing is a brain-inspired form of computing based on the manipulation of high-dimensional vectors. Offering robust data representation and relatively fast learning, HD computing is a promising candidate for energy-efficient classification of biological signals. This paper describes the application of HD computing-based machine learning to the classification of biological gender from resting-state and task functional magnetic resonance imaging (fMRI) from the publicly available Human Connectome Project (HCP). The developed HD algorithm derives predictive features through mean dynamic functional connectivity (dFC) analysis. Record encoding is employed to map features onto hyperdimensional space. Utilizing adaptive retraining techniques, the HD computing-based classifier achieves an average biological gender classification accuracy of 87%, as compared to 84% achieved by edge entropy measure. 
    more » « less
  3. Hyperdimensional computing (HD) is an emerging brain-inspired paradigm used for machine learning classification tasks. It manipulates ultra-long vectors-hypervectors- using simple operations, which allows for fast learning, energy efficiency, noise tolerance, and a highly parallel distributed framework. HD computing has shown a significant promise in the area of biological signal classification. This paper addresses group-specific premature ventricular contraction (PVC) beat detection with HD computing using the data from the MIT-BIH arrhythmia database. Temporal, heart rate variability (HRV), and spectral features are extracted, and minimal redundancy maximum relevance (mRMR) is used to rank and select features for classification. Three encoding approaches are explored for mapping the features into the HD space. The HD computing classifiers can achieve a PVC beat detection accuracy of 97.7 % accuracy, compared to 99.4% achieved by more computationally complex methods such as convolutional neural networks (CNNs). 
    more » « less
  4. Hyperdimensional (HD) computing is built upon its unique data type referred to as hypervectors. The dimension of these hypervectors is typically in the range of tens of thousands. Proposed to solve cognitive tasks, HD computing aims at calculating similarity among its data. Data transformation is realized by three operations, including addition, multiplication and permutation. Its ultra-wide data representation introduces redundancy against noise. Since information is evenly distributed over every bit of the hypervectors, HD computing is inherently robust. Additionally, due to the nature of those three operations, HD computing leads to fast learning ability, high energy efficiency and acceptable accuracy in learning and classification tasks. This paper introduces the background of HD computing, and reviews the data representation, data transformation, and similarity measurement. The orthogonality in high dimensions presents opportunities for flexible computing. To balance the tradeoff between accuracy and efficiency, strategies include but are not limited to encoding, retraining, binarization and hardware acceleration. Evaluations indicate that HD computing shows great potential in addressing problems using data in the form of letters, signals and images. HD computing especially shows significant promise to replace machine learning algorithms as a light-weight classifier in the field of internet of things (IoTs). 
    more » « less
  5. Brain-inspired Hyperdimensional (HD) computing models cognition by exploiting properties of high dimensional statistics– high-dimensional vectors, instead of working with numeric values used in contemporary processors. A fundamental weakness of existing HD computing algorithms is that they require to use floating point models in order to provide acceptable accuracy on realistic classification problems. However, working with floating point values significantly increases the HD computation cost. To address this issue, we proposed QuantHD, a novel framework for quantization of HD computing model during training. QuantHD enables HD computing to work with a low-cost quantized model (binary or ternary model) while providing a similar accuracy as the floating point model. We accordingly propose an FPGA implementation which accelerates HD computing in both training and inference phases. We evaluate QuantHD accuracy and efficiency on various real-world applications, and observe that QuantHD can achieve on average 17.2% accuracy improvement as compared to the existing binarized HD computing algorithms which provide a similar computation cost. In terms of efficiency, QuantHD FPGA implementation can achieve on average 42.3× and 4.7× (34.1× and 4.1×) energy efficiency improvement and speedup during inference (training) as compared to the state-of-the-art HD computing algorithms. 
    more » « less