skip to main content


Title: Blockage Robustness in Access Point Association for mmWave Wireless LANs with Mobility
Millimeter-wave wireless LANs are targeted for use with bandwidth-intensive applications such as virtual/augmented reality and real-time high-definition video. To maintain high throughput while addressing mmWave signal blockages, multiple access points (APs) within one room to improve line-of-sight conditions is considered a promising approach. In a scenario with fixed and mobile (human) obstacles, we mathematically analyze LoS blockages produced by mobility, and use the analysis to develop a multi-AP association scheme. Our scheme statically assigns primary and backup APs in order to maximize blockage robustness and perform load balancing among APs. Simulation results show that: 1) our static approach can provide blockage tolerance close to that of an expensive dynamic probing approach while achieving higher throughput, 2) the use of client mobility patterns, if known, can improve our static approach even further, and 3) our approach achieves significantly better fairness and load balancing than existing approaches.  more » « less
Award ID(s):
1813242
NSF-PAR ID:
10322917
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Conference on Local Computer Networks
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs) due to its ability to achieve data rates in the Gbps range. However, mmWave suffers from a high beamforming overhead and requirement of line of sight (LOS) to maintain a strong connection. For Vehicle-to-Infrastructure (V2I) scenarios, where CAVs connect to roadside units (RSUs), these drawbacks become apparent. Because vehicles are dynamic, there is a large potential for link blockages. These blockages are detrimental to the connected applications running on the vehicle, such as cooperative perception and remote driver takeover. Existing RSU selection schemes base their decisions on signal strength and vehicle trajectory alone, which is not enough to prevent the blockage of links. Many modern CAVs motion planning algorithms routinely use other vehicle’s near-future path plans, either by explicit communication among vehicles, or by prediction. In this paper, we make use of the knowledge of other vehicle’s near future path plans to further improve the RSU association mechanism for CAVs. We solve the RSU association algorithm by converting it to a shortest path problem with the objective to maximize the total communication bandwidth. We evaluate our approach, titled B-AWARE, in simulation using Simulation of Urban Mobility (SUMO) and Digital twin for self-dRiving Intelligent VEhicles (DRIVE) on 12 highway and city street scenarios with varying traffic density and RSU placements. Simulations show B-AWARE results in a 1.05× improvement of the potential datarate in the average case and 1.28× in the best case vs. the state-of-the-art. But more impressively, B-AWARE reduces the time spent with no connection by 42% in the average case and 60% in the best case as compared to the state-of-the-art methods. This is a result of B-AWARE reducing nearly 100% of blockage occurrences.

     
    more » « less
  2. Millimeter-wave communication is a highly promising technology to deliver multi-gigabit-per-second transmission rates for next-generation wireless LANs (WLANs). To achieve such ultra-high throughput performance in indoor scenarios, line-of-sight (LoS) connectivity becomes a critical requirement. Prior work has proposed access point (AP) mobility as an approach to improve LoS conditions and, thereby, approach optimum mmWave WLAN performance. In this work, we present a comprehensive simulation study of linear AP mobility that investigates various dimensions, including the number of mobile APs, the placement of the mobile AP platforms, and the length of the platforms. The results show how WLAN performance varies across these dimensions and also compares the results against a varying number of static APs to quantity the performance gains achievable from mobility. The results show that even 2 or 3 mobile APs can significantly outperform a much larger number of static APs and that deploying up to 3 mobile APs in a room brings substantial performance gains. 
    more » « less
  3. Abstract

    We design a new strategy to load‐balance high‐intensity sub‐grid atmospheric physics calculations restricted to a small fraction of a global climate simulation's domain. We show why the current parallel load balancing infrastructure of Community Earth System Model (CESM) and Energy Exascale Earth Model (E3SM) cannot efficiently handle this scenario at large core counts. As an example, we study an unusual configuration of the E3SM Multiscale Modeling Framework (MMF) that embeds a binary mixture of two separate cloud‐resolving model grid structures that is attractive for low cloud feedback studies. Less than a third of the planet uses high‐resolution (MMF‐HR; sub‐km horizontal grid spacing) relative to standard low‐resolution (MMF‐LR) cloud superparameterization elsewhere. To enable MMF runs with Multi‐Domain cloud resolving models (CRMs), our load balancing theory predicts the most efficient computational scale as a function of the high‐intensity work's relative overhead and its fractional coverage. The scheme successfully maximizes model throughput and minimizes model cost relative to precursor infrastructure, effectively by devoting the vast majority of the processor pool to operate on the few high‐intensity (and rate‐limiting) high‐resolution (HR) grid columns. Two examples prove the concept, showing that minor artifacts can be introduced near the HR/low‐resolution CRM grid transition boundary on idealized aquaplanets, but are minimal in operationally relevant real‐geography settings. As intended, within the high (low) resolution area, our Multi‐Domain CRM simulations exhibit cloud fraction and shortwave reflection convergent to standard baseline tests that use globally homogenous MMF‐LR and MMF‐HR. We suggest this approach can open up a range of creative multi‐resolution climate experiments without requiring unduly large allocations of computational resources.

     
    more » « less
  4. We consider the load-balancing design for forwarding incoming flows to access points (APs) in high-density wireless networks with both channel fading and flow-level dynamics, where each incoming flow has a certain amount of service demand and leaves the system once its service request is complete. The efficient load-balancing design is strongly needed for supporting high-quality wireless connections in high-density areas. In this work, we propose a Joint Load-Balancing and Scheduling (JLBS) Algorithm that always forwards the incoming flows to the AP with the smallest workload in the presence of flow-level dynamics and each AP always serves the flow with the best channel quality. Our analysis reveals that our proposed JLBS Algorithm not only achieves maximum system throughput, but also minimizes the total system workload in the heavy-traffic regime. Moreover, we observe from both our theoretical and simulation results that the mean total workload performance under the proposed JLBS Algorithm does not degrade as the number of APs increases, which is strongly desirable in high-density wireless networks. 
    more » « less
  5. 60 GHz millimeter-wave WLANs are gaining traction with their ability to provide multi-gigabit per second data rates. In spite of their potential, link outages due to human body blockage remain a challenging outstanding problem. In this work, we propose mmChoir, a novel proactive blockage mitigation technique that utilizes joint transmissions from multiple Access Points (APs) to provide blockage resilience to clients. We derive a new reliability metric based on angular spread of incoming paths to a client and their blockage probabilities. The metric can be used to intelligently select joint transmissions that can provide higher reliability. The reliability metric along with a novel interference estimation model, is used by mmChoir's scheduler to judiciously schedule joint transmissions, and increase network capacity and reliability. Our testbed and trace-driven simulations show that mmChoir can outperform existing beamswitching based blockage mitigation scheme with on an average 58% higher network throughput. 
    more » « less