skip to main content


Title: Methane emissions from subtropical wetlands: An evaluation of the role of data filtering on annual methane budgets
Award ID(s):
2025954 1832229 1237517 1561161
NSF-PAR ID:
10323166
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Agricultural and Forest Meteorology
Volume:
321
Issue:
C
ISSN:
0168-1923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO 2 ) into the potent greenhouse gas methane (CH 4 ). Here, we report carbon ( 13 C/ 12 C) and hydrogen ( 2 H/ 1 H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris . The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis ( 13 α CO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations ( 2 α H2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2 α H2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2 H, and that 2 α H2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles. IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature. 
    more » « less
  2. The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha (α) subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin.

     
    more » « less
  3. At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated V max , and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample’s methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption. 
    more » « less
  4. null (Ed.)