In this study, a machine learning based computational approach has been developed to investigate the cation distribution in spinel crystals. The computational approach integrates the construction of datasets consisting of the energies calculated from density functional theory, the training of machine learning models to derive the relationship between system energy and structural features, and atomistic Monte Carlo simulations to sample the thermodynamic equilibrium structures of spinel crystals. It is found that the support vector machine model yields excellent performance in energy predictions based on spinel crystal structures. Furthermore, the developed computational approach has been applied to predict the cation distribution in single spinel MgAl2O4 and MgFe2O4 and double spinel MgAl2-aFeaO4. Agreeing with the available experimental data, the computational approach correctly predicts that the equilibrium degree of inversion of MgAl2O4 increases with temperature, whereas the degree of inversion of MgFe2O4 decreases with temperature. Additionally, it is predicted that the equilibrium occupancy of Mg cations at the tetrahedral and octahedral sites in MgAl2-aFeaO4 could be tuned as a function of chemical composition. Therefore, this study presents a reliable computational approach that can be extended to study the variation of cation distribution with processing temperature and chemical composition in a wide range of complex multi-cation spinel oxides with numerous applications.
- Award ID(s):
- 2004693
- PAR ID:
- 10323250
- Date Published:
- Journal Name:
- Chemistry of materials
- Volume:
- 33
- Issue:
- 16
- ISSN:
- 0897-4756
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
At low guest atom concentrations, Si clathrates can be viewed as semiconductors, with the guest atoms acting as dopants, potentially creating alternatives to diamond Si with exciting optoelectronic and spin properties. Studying Si clathrates with different guest atoms would not only provide insights into the electronic structure of the Si clathrates but also give insights into the unique properties that each guest can bring to the Si clathrate structure. However, the synthesis of Si clathrates with guests other than Na is challenging. In this study, we have developed an alternative approach, using thermal diffusion into type II Si clathrate with an extremely low Na concentration, to create Si clathrate with Li guests. Using time-of-flight secondary-ion mass spectroscopy, X-ray diffraction, and Raman scattering, thermal diffusion of Li into the nearly empty Si clathrate framework is detected and characterized as a function of the diffusion temperature and time. Interestingly, the Si clathrate exhibits reduced structural stability in the presence of Li, converting to polycrystalline or disordered phases for anneals at temperatures where the starting Na guest Si clathrate is quite stable. The Li atoms inserted into the Si clathrate lattice contribute free carriers, which can be detected in Raman scattering through their effect on the strength of Si−Si bonds in the framework. These carriers can also be observed in electron paramagnetic resonance (EPR). EPR shows, however, that Li guests are not simple analogues of Na guests. In particular, our results suggest that Li atoms, with their smaller size, tend to doubly occupy cages, forming “molecular-like” pairs with other Li or Na atoms. Results of this work provide a deeper insight into Li guest atoms in Si clathrate. These findings are also relevant to understanding how Li moves through and interacts with Si clathrate anodes in Li-ion batteries. Additionally, techniques presented in this work demonstrate a new method for filling the Si clathrate cages, enabling studies of a broad range of other guests in Si clathrates.more » « less
-
We present an exploration of a family of compositionally complex cubic spinel ferrites featuring combinations of Mg, Fe, Co, Ni, Cu, Mn, and Zn cations, systematically investigating the average and local atomic structures, chemical short-range order, magnetic spin configurations, and magnetic properties. All compositions result in ferrimagnetic average structures with extremely similar local bonding environments; however, the samples display varying degrees of cation inversion and, therefore, differing apparent bulk magnetization. Additionally, first-order reversal curve analysis of the magnetic reversal behavior indicates varying degrees of magnetic ordering and interactions, including potentially local frustration. Finally, reverse Monte Carlo modeling of the spin orientation demonstrates a relationship between the degree of cation inversion and the spin collinearity. Collectively, these observations correlate with differences in synthesis procedures. This work provides a framework for understanding magnetic behavior reported for “high-entropy spinels,” revealing many are likely compositionally complex oxides with differing degrees of chemical short-range order—not meeting the community established criteria for high or medium entropy compounds. Moreover, this work highlights the importance of reporting complete sample processing histories and investigating local to long-range atomic arrangements when evaluating potential entropic mixing effects and assumed property correlations in high entropy materials.more » « less
-
Abstract Abundant Li resources in the ocean are promising alternatives to refining ore, whose supplies are limited by the total amount and geopolitical imbalance of reserves in Earth's crust. Despite advances in Li+extraction using porous membranes, they require screening other cations on a large scale due to the lack in precise control of pore size and inborn defects. Herein, MoS2nanoflakes on a multilayer graphene membrane (MFs‐on‐MGM) that possess ion channels comprising i) van der Waals interlayer gaps for optimal Li+extraction and ii) negatively charged vertical inlets for cation attraction, are reported. Ion transport measurements across the membrane reveal ≈6‐ and 13‐fold higher selectivity for Li+compared to Na+and Mg2+, respectively. Furthermore, continuous, stable Li+extraction from seawater is demonstrated by integrating the membrane into a H2and Cl2evolution system, enabling more than 104‐fold decrease in the Na+concentration and near‐complete elimination of other cations.
-
Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li + concentrations in Li 3 OCl using ab initio molecular dynamics simulations. The simulations accurately capture the complex interactions between Li + vacancies ( V Li ′ ), the dominant mobile species in Li 3 OCl . The V Li ′ polarize and distort the host lattice, inducing additional non-vacancy-mediated diffusion mechanisms and correlated diffusion events that reduce the activation energy barrier at concentrations as low as 1.5% V Li ′ . Our analyses of discretized diffusion events in both space and time illustrate the critical interplay between correlated dynamics, polarization and local distortion in promoting ionic conductivity in Li 3 OCl . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.more » « less