skip to main content


Title: When the light bulb turns on: motivation and collaboration spark the creation of ideas for theoretical physicists
In this project, we sought to uncover the cognitive processes and skills that are involved in completing a theoretical physics project. Theoretical physics is often portrayed as a field requiring individual genius and can seem inaccessible to undergraduate students, as well as the public. We drew upon the foundations of Cognitive Task Analysis and completed semi-structured interviews with eleven theoretical physics faculty members from several different research institutions who specialized in subfields including quantum optics, biophysics, computational astrophysics, and string theory. We analyzed the processes and skills of these physicists, focusing on an analysis of idea origin, which is typically the first cognitive process within a project, and how it was connected to collaboration and motivation. We used concept maps to organize these codes and portray the factors that influence the creation of project ideas. We found that motivation and collaboration are fundamental determinants of project ideas and their origins, which contradicts the "lone genius" stereotype. These findings on cognitive processes and skills can help us understand how to better prepare students to do theoretical physics research. Finally, the information gathered during this project may be useful for improving the public understanding of theoretical physics, dispelling the belief that the field requires "genius," and making it accessible to more students.  more » « less
Award ID(s):
1846321
NSF-PAR ID:
10323332
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physics Education Research Conference 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  2. Frank, Brian W. ; Jones, Dyan L. ; Ryan, Qing X. (Ed.)
    Many of the activities and cognitive processes that physicists use while solving problems are "invisible" to students, which can hinder their acquisition of important expert-like skills. Whereas the detailed calculations performed by researchers are often published in journals and textbooks, other activities such as those undertaken while planning how to approach a problem are rarely discussed in published research. Hence, these activities are especially hidden from students. To better understand how physicists solve problems in their professional research, we leveraged the framework of cognitive task analysis to conduct semi-structured interviews with theoretical physicists (N=11). Here we elucidate the role of planning and preliminary analysis in theorists' work. Theorists described using a variety of activities in order to decide if their project was doable while also generating possible solution paths. These actions included doing cursory calculations, reflecting on previous knowledge, gaining intuition and understanding by studying prior work, and reproducing previous results. We found that theorists typically did not pursue projects unless they had a clear idea of what the outcome of their project would be, or at least knew that they would be able to make progress on the problem. Thus, this preliminary design and analysis phase was highly important for theorists despite being largely hidden from students. We conclude by suggesting potential ways to incorporate our findings into the classroom to give students more numerous opportunities to engage in these expert-like practices. 
    more » « less
  3. A variety of research studies reveal the advantages of actively engaging students in the learning process through collaborative work in the classroom. However, the complex nature of the learning environment in large college general chemistry courses makes it challenging to identify the different factors that affect students’ cognitive and social engagement while working on in-class tasks. To provide insights into this area, we took a closer look at students’ conversations during in-class activities to characterize typical discourse patterns and expressed chemical thinking in representative student groups in samples collected in five different learning environments across four universities. For this purpose, we adapted and applied a ‘Community of Learners’ (CoL) theoretical perspective to characterize group activity through the analysis of student discourse. Within a CoL perspective, the extent to which a group functions as a community of learners is analyzed along five dimensions including Community of Discourse (CoD), Legitimization of Differences (LoD), Building on Ideas (BoI), Reflective Learning (RL), and Community of Practice (CoP). Our findings make explicit the complexity of analyzing student engagement in large active learning environments where a multitude of variables can affect group work. These include, among others, group size and composition, the cognitive level of the tasks, the types of cognitive processes used to complete tasks, and the motivation and willingness of students to substantively engage in disciplinary reasoning. Our results point to important considerations in the design and implementation of active learning environments that engage more students with chemical ideas at higher levels of reasoning. 
    more » « less
  4. A variety of research studies reveal the advantages of actively engaging students in the learning process through collaborative work in the classroom. However, the complex nature of the learning environment in large college general chemistry courses makes it challenging to identify the different factors that affect students’ cognitive and social engagement while working on in-class tasks. To provide insights into this area, we took a closer look at students’ conversations during in-class activities to characterize typical discourse patterns and expressed chemical thinking in representative student groups in samples collected in five different learning environments across four universities. For this purpose, we adapted and applied a ‘Community of Learners’ (CoL) theoretical perspective to characterize group activity through the analysis of student discourse. Within a CoL perspective, the extent to which a group functions as a community of learners is analyzed along five dimensions including Community of Discourse (CoD), Legitimization of Differences (LoD), Building on Ideas (BoI), Reflective Learning (RL), and Community of Practice (CoP). Our findings make explicit the complexity of analyzing student engagement in large active learning environments where a multitude of variables can affect group work. These include, among others, group size and composition, the cognitive level of the tasks, the types of cognitive processes used to complete tasks, and the motivation and willingness of students to substantively engage in disciplinary reasoning. Our results point to important considerations in the design and implementation of active learning environments that engage more students with chemical ideas at higher levels of reasoning. 
    more » « less
  5. Innovation training is considered critical for the future of our country, yet despite the important role, opportunities for students to develop innovation skills are limited. For STEM students, training in innovation principles and processes are frequently extra curricular pursuits, such as unpaid internships with start up organizations, shadowing innovation professionals, or obtaining an additional business degree or minor covering innovation principles. The National Science Foundation has funded the authors with a Science, Technology, Engineering and Mathematics (S STEM) grant to provide scholarships combined with research on best practices for recruitment, retention, and development of innovation skills for a diverse group of low income undergraduate students. Students in the program come from STEM disciplines in engineering and the physical sciences however, business students are also integrated into innovation courses although they are not funded by the S STEM grant Design, development, and implementation of the grant funded program’s first innovation related course, a 2 week fall intercession course will be presented Th is first year course is designed to provide the students with an introduction to innovation, develop and nurture the students’ innovation mindset and skills, and also help the students’ successful transition to college. The first-year two-week intercession course was designed and developed with two credit hours focusing on content related to innovation and one credit hour focusing on student success topics. The significant academic course components included: 1) interactive active-learning modules related to innovation processes, identifying where good ideas come from, working in teams, leadership, project management, and communication and presentation skills; 2) team innovation projects, one topic-assigned, applying skills learned in the content modules to develop innovation and team collaboration skills; and 3) integration of business students with STEM students which together gives viewpoints and experiences on product and customer needs. It is important to our nation’s health and safety to instill innovation in our students. In addition, today’s students are interested in innovation and in learning how to apply innovation techniques in their professional and personal lives. The course was designed for teams of four STEM students to one business student which provides a balanced input needed for this type of project taking into account the skillset of the technically oriented STEM students and the marketing-oriented business students, as well as personality types. This ensures that all voices are heard, and topical areas are addressed. There was no problem in getting faculty interest in developing the course, and the collaboration between retention professionals and faculty went well. After the course, an iterative improvement retrospective will be performed on the program as implemented to this point to inform improvements for next year’s cohort. This material is based upon work supported by the National Science Foundation under Grant No. 2030297. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 
    more » « less