The emerging volumetric videos offer a fully immersive, six degrees of freedom (6DoF) viewing experience, at the cost of extremely high bandwidth demand. In this paper, we design, implement, and evaluate Vues, an edge-assisted transcoding system that delivers high-quality volumetric videos with low bandwidth requirement, low decoding overhead, and high quality of experience (QoE) on mobile devices. Through an IRB-approved user study, we build a f irst-of-its-kind QoE model to quantify the impact of various factors introduced by transcoding volumetric content into 2D videos. Motivated by the key observations from this user study, Vues employs a novel multiview approach with the overarching goal of boosting QoE. The Vues edge server adaptively transcodes a volumetric video frame into multiple 2D views with the help of a few lightweight machine learning models and strategically balances the extra bandwidth consumption of additional views and the improved QoE, indicated by our QoE model. The client selects the view that optimizes the QoE among the delivered candidates for display. Comprehensive evaluations using a prototype implementation indicate that Vues dramatically outperforms existing approaches. On average, it improves the QoE by 35% (up to 85%), compared to single-view transcoding schemes, and reduces the bandwidth consumption by 95%, compared to the state-of-the-art that directly streams volumetric videos.
more »
« less
EyeQoE: A Novel QoE Assessment Model for 360-degree Videos Using Ocular Behaviors
As virtual reality (VR) offers an unprecedented experience than any existing multimedia technologies, VR videos, or called 360-degree videos, have attracted considerable attention from academia and industry. How to quantify and model end users' perceived quality in watching 360-degree videos, or called QoE, resides the center for high-quality provisioning of these multimedia services. In this work, we present EyeQoE, a novel QoE assessment model for 360-degree videos using ocular behaviors. Unlike prior approaches, which mostly rely on objective factors, EyeQoE leverages the new ocular sensing modality to comprehensively capture both subjective and objective impact factors for QoE modeling. We propose a novel method that models eye-based cues into graphs and develop a GCN-based classifier to produce QoE assessment by extracting intrinsic features from graph-structured data. We further exploit the Siamese network to eliminate the impact from subjects and visual stimuli heterogeneity. A domain adaptation scheme named MADA is also devised to generalize our model to a vast range of unseen 360-degree videos. Extensive tests are carried out with our collected dataset. Results show that EyeQoE achieves the best prediction accuracy at 92.9%, which outperforms state-of-the-art approaches. As another contribution of this work, we have publicized our dataset on https://github.com/MobiSec-CSE-UTA/EyeQoE_Dataset.git.
more »
« less
- Award ID(s):
- 1943509
- PAR ID:
- 10323609
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos.more » « less
-
null (Ed.)We investigate a novel communications system that integrates scalable multi-layer 360-degree video tiling, viewport-adaptive rate-distortion optimal resource allocation, and VR-centric edge computing and caching, to enable future high-quality untethered VR streaming. Our system comprises a collection of 5G small cells that can pool their communication, computing, and storage resources to collectively deliver scalable 360-degree video content to mobile VR clients at much higher quality. Our major contributions are rigorous design of multi-layer 360-degree tiling and related models of statistical user navigation, and analysis and optimization of edge-based multi-user VR streaming that integrates viewport adaptation and server cooperation. We also explore the possibility of network coded data operation and its implications for the analysis, optimization, and system performance we pursue here. We demonstrate considerable gains in delivered immersion fidelity, featuring much higher 360-degree viewport peak signal to noise ratio (PSNR) and VR video frame rates and spatial resolutions.more » « less
-
After the emergence of video streaming services, more creative and diverse multimedia content has become available, and now the capability of streaming 360-degree videos will open a new era of multimedia experiences. However, streaming these videos requires larger bandwidth and less latency than what is found in conventional video streaming systems. Rate adaptation of tiled videos and view prediction techniques are used to solve this problem. In this paper, we introduce the Navigation Graph, which models viewing behaviors in the temporal (segments) and the spatial (tiles) domains to perform the rate adaptation of tiled media associated with the view prediction. The Navigation Graph allows clients to perform view prediction more easily by sharing the viewing model in the same way in which media description information is shared in DASH. It is also useful for encoding the trajectory information in the media description file, which could also allow for more efficient navigation of 360-degree videos. This paper provides information about the creation of the Navigation Graph and its uses. The performance evaluation shows that the Navigation Graph based view prediction and rate adaptation outperform other existing tiled media streaming solutions. Navigation Graph is not limited to 360-degree video streaming applications, but it can also be applied to other tiled media streaming systems, such as volumetric media streaming for augmented reality applications.more » « less
-
null (Ed.)Video streaming commonly uses Dynamic Adaptive Streaming over HTTP (DASH) to deliver good Quality of Experience (QoE) to users. Videos used in DASH are predominantly encoded by single-layered video coding such as H.264/AVC. In comparison, multi-layered video coding such as H.264/SVC provides more flexibility for up- grading the quality of buffered video segments and has the potential to further improve QoE. However, there are two challenges for us- ing SVC in DASH: (i) the complexity in designing ABR algorithms; and (ii) the negative impact of SVC’s coding overhead. In this work, we propose a deep reinforcement learning method called Grad for designing ABR algorithms that take advantage of the quality up- grade mechanism of SVC. Additionally, we quantify the impact of coding overhead on the achievable QoE of SVC in DASH, and propose jump-enabled hybrid coding (HYBJ) to mitigate the impact. Through emulation, we demonstrate that Grad-HYBJ, an ABR algo- rithm for HYBJ learned by Grad, outperforms the best performing state-of-the-art ABR algorithm by 17% in QoE.more » « less
An official website of the United States government

