skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Space–Time Physics in Background-Independent Theories of Quantum Gravity
Background independence is often emphasized as an important property of a quantum theory of gravity that takes seriously the geometrical nature of general relativity. In a background-independent formulation, quantum gravity should determine not only the dynamics of space–time but also its geometry, which may have equally important implications for claims of potential physical observations. One of the leading candidates for background-independent quantum gravity is loop quantum gravity. By combining and interpreting several recent results, it is shown here how the canonical nature of this theory makes it possible to perform a complete space–time analysis in various models that have been proposed in this setting. In spite of the background-independent starting point, all these models turned out to be non-geometrical and even inconsistent to varying degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome leads to several implications for potential observations as well as lessons for other background-independent approaches.  more » « less
Award ID(s):
1912168
PAR ID:
10323778
Author(s) / Creator(s):
Date Published:
Journal Name:
Universe
Volume:
7
Issue:
7
ISSN:
2218-1997
Page Range / eLocation ID:
251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Dynamical black-hole scenarios have been developed in loop quantum gravity in various ways, combining results from mini and midisuperspace models. In the past, the underlying geometry of space-time has often been expressed in terms of line elements with metric components that differ from the classical solutions of general relativity, motivated by modified equations of motion and constraints. However, recent results have shown by explicit calculations that most of these constructions violate general covariance and slicing independence. The proposed line elements and black-hole models are therefore ruled out. The only known possibility to escape this sentence is to derive not only modified metric components but also a new space-time structure which is covariant in a generalized sense. Formally, such a derivation is made available by an analysis of the constraints of canonical gravity, which generate deformations of hypersurfaces in space-time, or generalized versions if the constraints are consistently modified. A generic consequence of consistent modifications in effective theories suggested by loop quantum gravity is signature change at high density. Signature change is an important ingredient in long-term models of black holes that aim to determine what might happen after a black hole has evaporated. Because this effect changes the causal structure of space-time, it has crucial implications for black-hole models that have been missed in several older constructions, for instance in models based on bouncing black-hole interiors. Such models are ruled out by signature change even if their underlying space-times are made consistent using generalized covariance. The causal nature of signature change brings in a new internal consistency condition, given by the requirement of deterministic behavior at low curvature. Even a causally disconnected interior transition, opening back up into the former exterior as some kind of astrophysical white hole, is then ruled out. New versions consistent with both generalized covariance and low-curvature determinism are introduced here, showing a remarkable similarity with models developed in other approaches, such as the final-state proposal or the no-transition principle obtained from the gauge-gravity correspondence. 
    more » « less
  2. A complete canonical formulation of general covariance makes it possible to construct new modified theories of gravity that are not of higher-curvature form, as shown here in a spherically symmetric setting. The usual uniqueness theorems are evaded by using a crucial and novel ingredient, allowing for fundamental fields of gravity distinct from an emergent space-time metric that provides a geometrical structure to all solutions. As specific examples, there are new expansion-shear couplings in cosmological models, a form of modified Newtonian dynamics can appear in a space-time covariant theory without introducing extra fields, and related effects help to make effective models of canonical quantum gravity fully consistent with general covariance. 
    more » « less
  3. Abstract The fermion propagator is derived in detail from the model of fermion coupled to loop quantum gravity (LQG). As an ingredient of the propagator, the vacuum state is defined as the ground state of some effective fermion Hamiltonian under the background geometry given by a coherent state resembling the classical Minkowski spacetime. Moreover, as a critical feature of LQG, the superposition over graphs is employed to define the vacuum state. It turns out that the graph superposition leads to the propagator being the average of the propagators of the lattice field theory over various graphs so that all fermion doubler modes are suppressed in the propagator. This resolves the doubling problem in LQG. Our result suggests that the superposition nature of quantum geometry should, on the one hand, resolve the tension between fermion and the fundamental discreteness and, on the other hand, relate to the continuum limit of quantum gravity. 
    more » « less
  4. Abstract A central problem in any quantum theory of gravity is to explain the emergence of the classical spacetime geometry in some limit of a more fundamental, microscopic description of nature. The gauge/gravity-correspondence provides a framework in which this problem can, in principle, be addressed. This is a holographic correspondence which relates a supergravity theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry should therefore emerge from some quantum state of the dual gauge theory. Here we confirm this by showing how the classical metric emerges from a canonical state in the dual gauge theory. In particular, we obtain approximations to the Sasaki-Einstein metric underlying the supergravity geometry, in terms of an explicit integral formula involving the canonical quantum state in question. In the special case of toric quiver gauge theories we show that our results can be computationally simplified through a process of tropicalization. 
    more » « less
  5. A<sc>bstract</sc> We study the entanglement phase structure of a holographic boundary conformal field theory (BCFT) in a two-dimensional black hole background. The bulk dual is the AdS3black string geometry with a Karch-Randall brane. We compute the subregion entanglement entropy of various two-sided bipartitions to elucidate the phase space where a Page curve exists in this setup. We do fully analytical computations on both the gravity side and the field theory side and demonstrate that the results precisely match. We discuss the entanglement phase structure describing where a Page curve exists in this geometry in the context of these analytical results. This is a useful model to study entanglement entropy for quantum field theory on a curved background. 
    more » « less