skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enantioselective sensing of insect pheromones in water
An arrayed combination of water-soluble deep cavitands and cationic dyes has been shown to optically sense insect pheromones at micromolar concentration in water. Machine learning approaches were used to optimize the most effective array components, which allows differentiation between small structural differences in targets, including between different diastereomers, even though the pheromones have no innate chromophore. When combined with chiral additives, enantiodiscrimination is possible, dependent on the size and shape of the pheromone.  more » « less
Award ID(s):
1707347
PAR ID:
10324005
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
57
Issue:
98
ISSN:
1359-7345
Page Range / eLocation ID:
13341 to 13344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual’s responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa. 
    more » « less
  2. The nematode Caenorhabditis elegans produces tens, if not hundreds, of different ascarosides as pheromones to communicate with other members of its species. Overlapping mixtures of these pheromones affect the development of the worm and a variety of different behaviors. The ascarosides represent a unique tool for dissecting the neural circuitry that controls behavior and that connects to important signaling pathways, such as the insulin and TGFβ pathways, that lie at the nexus of development, metabolism, and lifespan in C. elegans . However, the exact physiological roles of many of the ascarosides are unclear, especially since many of these pheromones likely have multiple functions depending on their concentrations, the presence of other pheromones, and a variety of other factors. Determining these physiological roles will be facilitated by top-down approaches to characterize the pheromone receptors and their function, as well as bottom-up approaches to characterize the pheromone biosynthetic enzymes and their regulation. 
    more » « less
  3. Abstract An ant colony is the epitome of social organization where up to millions of individuals cooperate to survive, compete, and reproduce as a single superorganism, Female members of ant colonies typically are categorized into a reproductive queen caste and a non-reproductive worker caste. The queen(s) conveys her fertility condition and in cases, genotype status, via a suite of queen pheromones whose various functions are crucial to the superorganismal nature of ant colonies. Knowledge of these functional properties is fundamental for identifying constituent chemicals and understanding corresponding modes of actions. In this review, I summarize functional properties of ant queen pheromones learned from seven decades of behavioral experiments, and contextualize this knowledge within the broader understanding of queen pheromones in other major groups of social insects. The effects include promotion of colony integrity and coherence, maintenance of reproductive dominance of the queen, and regulation of colony social structure. Additionally, general characteristics of queen pheromones are discussed and potential avenues for future research are highlighted. 
    more » « less
  4. Ostrinia nubilalis, a lepidopteran moth, also known as the European corn borer, has a major impact on the production of economically important crops in the United States and Europe. The female moth invites the male moth for mating through the release of pheromones, a volatile chemical signal. Pheromone binding proteins (PBPs) present in the male moth antennae are believed to pick up the pheromones, transport them across the aqueous sensillum lymph, and deliver them to the olfactory receptor neurons. Here we report for the first time the cloning, expression, refolding, purification, and structural characterization of Ostrinia nubilalis PBP3 (OnubPBP3). The recombinant protein showed nanomolar affinity to each isomer of the Ostrinia pheromones, E- and Z-11-tetradecenyl acetate. In a pH titration study by nuclear magnetic resonance, the protein exhibited an acid-induced unfolding at pH below 5.5. The molecular dynamics simulation study demonstrated ligand-induced conformational changes in the protein with both E- and Z-isomers of the Ostrinia pheromone. The simulation studies showed that while protein flexibility decreases upon binding to E-pheromone, it increases when bound to Z-pheromone. This finding suggests that the OnubPBP3 complex with E-pheromone is more stable than with Z-pheromone. 
    more » « less
  5. Spiders use various combinations of silks, adhesives, and behaviors to ensnare prey. One common but difficult-to-catch prey is moths. They easily escape typical orb-webs because their bodies are covered in tiny sacrificial scales that flake off when in contact with the web’s adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae—moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by the bolas spiders which create only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them close. Here, we confirm the hypothesis that the spinning behavior of the spider is directly used to spin its glue droplets using a high-speed video camera to observe the captured behavior of the bolas spider Cladomelea akermani as it actively spins its body and bolas. We use the kinematics of the spider and bolas to begin to quantify and model the physical and mechanical properties of the bolas during prey capture. We then examine why this species chooses to spin its body, an energetically costly behavior, during prey capture. We test the hypothesis that spinning helps to spread pheromones by creating a computational fluid dynamics model of airflow within an open field and comparing it to that of airflow within a tree, a common environment for bolas spiders that do not spin. Spinning in an open environment creates turbulent air, spreading pheromones further and creating a pocket of pheromones. Conversely, spinning within a tree does little to affect the natural airflow. 
    more » « less