skip to main content


Title: Securing Tire Pressure Monitoring System for Vehicular Privacy
Modern vehicles are equipped with vehicular sensors for smart navigation, vehicle state awareness, and other intelligent operations. Despite the previous belief that the sensor operations stay within a vehicle, as it is designed to be, we study information leakage through the tire pressure monitoring system (TPMS) sensors and the corresponding privacy breach. We demonstrate that, using a low-cost and off-the-shelf software defined radio (SDR), an unauthorized attacker can track uniquely-identifiable sensor IDs up to 40 meters away from the vehicle. To address the issue and protect vehicular privacy, we also propose an effective and lightweight TPMS ID randomization scheme and analyze its security and the implementation costs.  more » « less
Award ID(s):
1922410
NSF-PAR ID:
10324016
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE 18th Annual Consumer Communications & Networking Conference (CCNC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing. 
    more » « less
  2. With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a fleet have been proposed to improve the urban efficiency, e.g., HD-live map, and traffic accident recovery. However, due to the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of vehicles' mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks as mobile sensors to sense urban phenomena, e.g., traffic, by using the equipped vehicular sensors, e.g., dash-cam, lidar, automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi fleet with 14 thousand vehicles; (ii) a bus fleet with 13 thousand vehicles; (iii) a truck fleet with 4 thousand vehicles. Further, we design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban sensing aspect based on the data from a regular vehicle (i.e., personal car) fleet with 11 thousand vehicles. The evaluation results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments covered by sensing vehicles) by 10% on average. 
    more » « less
  3. Vehicles are becoming more intelligent and automated. To achieve higher automation levels, vehicles are being equipped with more and more sensors. High data rate connectivity seems critical to allow vehicles and road infrastructure exchanging all these sensor data to enlarge their sensing range and make better safety related decisions. Connectivity also enables other applications such as infotainment or high levels of traffic coordination. Current solutions for vehicular communications though do not support the gigabit-per-second data rates. This presentation makes the case that millimeter wave communication is the only viable approach for high bandwidth connected vehicles. The motivation and challenges associated with using mmWave for vehicle-to-vehicle and vehicle-to-infrastructure applications are highlighted. Examples from recent work are provided including new theoretical results that enable mmWave communication in high mobility scenarios and innovative architectural concepts like position and radar-aided communication. 
    more » « less
  4. By enabling autonomous vehicles (AVs) to share data while driving, 5G vehicular communications allow AVs to collaborate on solving common autonomous driving tasks. AVs often rely on machine learning models to perform such tasks; as such, collaboration requires leveraging vehicular communications to improve the performance of machine learning algorithms. This paper provides a comprehensive literature survey of the intersection between machine learning for autonomous driving and vehicular communications. Throughout the paper, we explain how vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communications are used to improve machine learning in AVs, answering five major questions regarding such systems. These questions include: 1) How can AVs effectively transmit data wirelessly on the road? 2) How do AVs manage the shared data? 3) How do AVs use shared data to improve their perception of the environment? 4) How do AVs use shared data to drive more safely and efficiently? and 5) How can AVs protect the privacy of shared data and prevent cyberattacks? We also summarize data sources that may support research in this area and discuss the future research potential surrounding these five questions. 
    more » « less
  5. Abstract—Millimeter wave wireless spectrum deployments will allow vehicular communications to share high data rate vehicular sensor data in real-time.The highly directional nature of wireless links in millimeter spectral bands will require continuous channel measurements to ensure the transmitter (TX) and receiver (RX) beams are aligned to provide the best channel. Using real-world vehicular mmWave measurement data at 28GHz, we determine the optimal beam sweeping period, i.e. the frequency of the channel measurements,to align the RX beams to the best channel directions for maximizing the vehicle-to-infrastructure (V2I) throughput.We show that in a realistic vehicular traffic environment in Austin,TX, for a vehicle traveling at an average speed of 10.5mph,a beam sweeping period of 300 ms in future V2I communication standards would maximize theV2I throughput,using a system of four RX phased arrays that scanned the channel 360 degrees in the azimuth and 30 degrees above and below the boresight.We also investigate the impact of the number of active RX chains controlling the steerable phased arrays on V2I throughput. Reducing the number of RX chains controlling the phased arrays helps reduce the cost of the vehicular mmWave hardware while multiple RX chains, although more expensive,provide more robustness to beam direction changes at the vehicle,allowing near maximum throughput over a wide range of beam sweep periods.We show that the overhead of utilizing one RX chain instead of four leads to a10% drop in mean V2I throughput over six non-line- of-sight runs in real traffic conditions, with each run being 10 to 20 seconds long over a distance of 40 to 90 meters. Index Terms—mmWave;beam management;channel sound- ing; phased arrays;V2X;V2V;5G;sidelink 
    more » « less