skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Survey of Collaborative Machine Learning Using 5G Vehicular Communications
By enabling autonomous vehicles (AVs) to share data while driving, 5G vehicular communications allow AVs to collaborate on solving common autonomous driving tasks. AVs often rely on machine learning models to perform such tasks; as such, collaboration requires leveraging vehicular communications to improve the performance of machine learning algorithms. This paper provides a comprehensive literature survey of the intersection between machine learning for autonomous driving and vehicular communications. Throughout the paper, we explain how vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communications are used to improve machine learning in AVs, answering five major questions regarding such systems. These questions include: 1) How can AVs effectively transmit data wirelessly on the road? 2) How do AVs manage the shared data? 3) How do AVs use shared data to improve their perception of the environment? 4) How do AVs use shared data to drive more safely and efficiently? and 5) How can AVs protect the privacy of shared data and prevent cyberattacks? We also summarize data sources that may support research in this area and discuss the future research potential surrounding these five questions.  more » « less
Award ID(s):
2010366
PAR ID:
10327386
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Communications surveys and tutorials
Volume:
24
Issue:
2
ISSN:
1553-877X
Page Range / eLocation ID:
1280-1303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected and autonomous vehicles (CAVs) will revolutionize tomorrow’s intelligent transportation systems, being considered promising to improve transportation safety, traffic efficiency, and mobility. In fact, envisioned use cases of CAVs demand very high throughput, lower latency, highly reliable communications, and precise positioning capabilities. The availability of a large spectrum at millimeter-wave (mmWave) band potentially promotes new specifications in spectrum technologies capable of supporting such service requirements. In this article, we specifically focus on how mmWave communications are being approached in vehicular standardization activities, CAVs use cases and deployment challenges in realizing the future fully connected settings. Finally, we also present a detailed performance assessment on mmWave-enabled vehicle-to-vehicle (V2V) cooperative perception as an example case study to show the impact of different configurations. 
    more » « less
  2. Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)
    Recent developments in autonomous vehicle (AV) or connected AVs (CAVs) technology have led to predictions that fully self-driven vehicles could completely change the transportation network over the next decades. However, at this stage, AVs and CAVs are still in the development stage which requires various trails in the field and machine learning through autonomous driving miles on real road networks. Until the complete market adoption of autonomous technology, a long transition period of coexistence between conventional and autonomous cars would exist. It is important to study and develop the expected driving behavior of future autonomous cars and the traffic simulation platforms provide an opportunity for researchers and technology developers to implement and assess the different behaviors of self-driving vehicle technology before launching it to the actual ground. This study utilizes PTV VISSIM microsimulation platform to evaluate the mobility performance of unmanned vehicles at a 4-way signalized traffic intersection. The software contains three different AV-ready driving logics such as AV-cautious, AV-normal, and AV-aggressive which were tested against the performance of the conventional vehicles, and the results of the study revealed that the overall network operational performance improves with the progressive introduction of AVs using AV-normal, and AV-aggressive driving behaviors while the AV-cautious driving behavior stays conservative and deteriorates the traffic performance. 
    more » « less
  3. Self-driving vehicles are the latest innovation in improving personal mobility and road safety by removing arguably error-prone humans from driving-related tasks. Such advances can prove especially beneficial for people who are blind or have low vision who cannot legally operate conventional motor vehicles. Missing from the related literature, we argue, are studies that describe strategies for vehicle design for these persons. We present a case study of the participatory design of a prototype for a self-driving vehicle human-machine interface (HMI) for a graduate-level course on inclusive design and accessible technology. We reflect on the process of working alongside a co-designer, a person with a visual disability, to identify user needs, define design ideas, and produce a low-fidelity prototype for the HMI. This paper may benefit researchers interested in using a similar approach for designing accessible autonomous vehicle technology. INTRODUCTION The rise of autonomous vehicles (AVs) may prove to be one of the most significant innovations in personal mobility of the past century. Advances in automated vehicle technology and advanced driver assistance systems (ADAS) specifically, may have a significant impact on road safety and a reduction in vehicle accidents (Brinkley et al., 2017; Dearen, 2018). According to the Department of Transportation (DoT), automated vehicles could help reduce road accidents caused by human error by as much as 94% (SAE International, n.d.). In addition to reducing traffic accidents and saving lives and property, autonomous vehicles may also prove to be of significant value to persons who cannot otherwise operate conventional motor vehicles. AVs may provide the necessary mobility, for instance, to help create new employment opportunities for nearly 40 million Americans with disabilities (Claypool et al., 2017; Guiding Eyes for the Blind, 2019), for instance. Advocates for the visually impaired specifically have expressed how “transformative” this technology can be for those who are blind or have significant low vision (Winter, 2015); persons who cannot otherwise legally operate a motor vehicle. While autonomous vehicles have the potential to break down transportation 
    more » « less
  4. Autonomous vehicles are equipped with multiple high-resolution sensors and cameras for an accurate local view of their surroundings. Equally important, they will need to exchange such high data-rate among each other for a wider view of their environments. The use of high-bandwidth millimeter-wave (mmWave) spectrum bands in vehicular communications can satisfy such demand for high data-rate exchange. Before attempting to design any mmWave vehicular communication system, there is a need to fully understand the propagation characteristics of such mmWave mobile environment. In this paper, we leverage the ray tracing capabilities in the WinProp software suite and study the propagation characteristics of mmWave channels in vehicular communications. In doing so, we present the implementation of the Vehicle-to-Infrastructure (V2I) communication scenario in WinProp. Via simulation results, we are able to show that approximately 20 dB degradation of signal strength can happen within 5 seconds. 
    more » « less
  5. null (Ed.)
    Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors. 
    more » « less