skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TCAD Modeling of Cryogenic nMOSFET ON-State Current and Subthreshold Slope
In this paper, through careful calibration, we demonstrate the possibility of using a single set of models and parameters to model the ON current and Sub-threshold Slope (SS) of an nMOSFET at 300K and 5K using Technology Computer-Aided Design (TCAD). The device used is a 0.35m technology nMOSFET with W/L=10um/10um. We show that it is possible to model the abnormal SS by using interface acceptor traps with a density less than 2×1012cm-2. We also propose trap distribution profiles in the energy space that can be used to reproduce other observed SS from 4K to 300K. Although this work does not prove or disprove any possible origin of the abnormal SS, it shows that one cannot completely rule out the interfacial traps as the origin and it shows that interfacial traps can be used to model the abnormal SS before the origin is fully understood. We also show that Drain-Induced-Barrier-Lowering (DIBL) is much reduced at cryogenic temperature due to the abnormal slope and the device optimization strategy might need to be revised.  more » « less
Award ID(s):
2046220
PAR ID:
10324369
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
Page Range / eLocation ID:
255 to 258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tunnel field-effect-transistors (TFETs) are promising candidates for next generation transistors for low power applications, as the TFETs promise low subthreshold swing (SS). Different from traditional MOSFET, the TFETs rely on energy-efficient switching of band-to-band tunneling (BTBT), therefore the SS in TFETs is not limited by the 60 mV/decade Boltzmann limit. This reduction in energy consumption makes TFETs suitable candidates to replace standard MOSFETs in low power applications. However, most experimentally demonstrated TFETs suffer from low on current[1], and the theoretical low SS is compromised by impurities and Auger generation. To understand the underlying physics and predict the device characteristics of TFETs, sophisticated numerical simulations can be used. On the other hand, physics based compact models are also required to provide fast predictions for existing and new device concepts. Furthermore, a physics based compact model is more efficient to model the effects like Auger generation which could be time-consuming for numerical calculations. In this work, we introduce a physics based compact model for homojunction TFETs with Auger generation effect considered. This compact model is based on the modified Simmons' equation at finite temperature[2]. With our compact model, the possible impact of Auger generation effect to off-current and SS is explored. 
    more » « less
  2. Low InP/dielectric interface trap density Dit will enable low subthreshold swings (SS) in mm-wave MOSFETs [1] using InGaAs/InP composite channels [2] for increased breakdown and in tunnel FETs (TFETs) [3] using InAs/InP heterojunctions [4] for increased tunneling probability. Reducing Dit at the etched InP mesa edges of DHBTs and avalanche photodiodes will reduce leakage currents and increase breakdown voltages. While it can be difficult [5] to extract Dit of III-V interfaces from MOSCAP characteristics, Dit can be readily determined from the SS of long gate length Lg MOSFETs. Here we report InP-channel MOSFETs with record low SS indicating record low Dit at the semiconductor-dielectric interface. The devices use a AlOxNy/ZrO2 gate dielectric and a 14nm channel thickness Tch. A sample of 13 MOSFETs at 2 m Lg shows SS=70mV/dec. (mean) ±3 mV/dec. (standard deviation), corresponding to a minimum Dit ~3×1012 cm-2eV-1. The lowest SS observed at 2 m Lg is 66 mV/dec. The results suggest that wide-bandgap InP layers can be incorporated into MOS device designs without large degradations in DC characteristics arising from interface defects 
    more » « less
  3. We calculate critical electronic conduction parameters of the amorphous phase of Ge 2 Sb 2 Te 5 (GST), a common material used in phase change memory. We estimate the room temperature bandgap of metastable amorphous GST to be E g (300K) = 1.84 eV based on a temperature dependent energy band model. We estimate the free carrier concentration at the melting temperature utilizing the latent heat of fusion to be 1.47 x 10 22 cm -3 . Using the thin film melt resistivity, we calculate the carrier mobility at melting point as 0.187 cm 2 /V-s. Assuming that metastable amorphous GST is a supercooled liquid with bipolar conduction, we compute the total carrier concentration as a function of temperature and estimate the room temperature free carrier concentration as p(300K) ≈ n(300K) = 1.69×10 17 cm -3 . Free electrons and holes are expected to recombine over time and the stable (drifted) amorphous GST is estimated to have p-type conduction with p(300K) ≈ 6×10 16 cm -3 . 
    more » « less
  4. Abstract Visibly transparent luminescent solar concentrators (TLSC) have the potential to turn existing infrastructures into net-zero-energy buildings. However, the reabsorption loss currently limits the device performance and scalability. This loss is typically defined by the Stokes shift between the absorption and emission spectra of luminophores. In this work, the Stokes shifts (SS) of near-infrared selective-harvesting cyanines are altered by substitution of the central methine carbon with dialkylamines. We demonstrate varyingSSwith values over 80 nm and ideal infrared-visible absorption cutoffs. The corresponding TLSC with such modification shows a power conversion efficiency (PCE) of 0.4% for a >25 cm2device area with excellent visible transparency >80% and up to 0.6% PCE over smaller areas. However, experiments and simulations show that it is not the Stokes shift that is critical, but the total degree of overlap that depends on the shape of the absorption tails. We show with a series ofSS-modulated cyanine dyes that theSSis not necessarily correlated to improvements in performance or scalability. Accordingly, we define a new parameter, the overlap integral, to sensitively correlate reabsorption losses in any LSC. In deriving this parameter, new approaches to improve the scalability and performance are discussed to fully optimize TLSC designs to enhance commercialization efforts. 
    more » « less
  5. Abstract In this work, TiO2thin films deposited by the atomic layer deposition (ALD) method were treated with a special N2O plasma surface treatment and used as the gate dielectric for AlGaN/GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs). The N2O plasma surface treatment effectively reduces defects in the oxide during low-temperature ALD growth. In addition, it allows oxygen atoms to diffuse into the device cap layer to increase the barrier height and thus reduce the gate leakage current. These TiO2films exhibit a dielectric constant of 54.8 and a two-terminal current of 1.96 × 10−10A mm−1in 2μm distance. When applied as the gate dielectric, the AlGaN/GaN MISHEMT with a 2μm-gate-length shows a high on/off ratio of 2.59 × 108and a low subthreshold slope (SS) of 84 mV dec−1among all GaN MISHEMTs using TiO2as the gate dielectric. This work provides a feasible way to significantly improve the TiO2film electrical property for gate dielectrics, and it suggests that the developed TiO2dielectric is a promising high-κgate oxide and a potential passivation layer for GaN-based MISHEMTs, which can be further extended to other transistors. 
    more » « less