skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The cohomology of Torelli groups is algebraic
Abstract The Torelli group of $$W_g = \#^g S^n \times S^n$$ is the group of diffeomorphisms of $$W_g$$ fixing a disc that act trivially on $$H_n(W_g;\mathbb{Z} )$$ . The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $$\text{Sp}_{2g}(\mathbb{Z} )$$ or $$\text{O}_{g,g}(\mathbb{Z} )$$ . In this article we prove that for $$2n \geq 6$$ and $$g \geq 2$$ , they are in fact algebraic representations. Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We further prove that the classifying space of the Torelli group is nilpotent.  more » « less
Award ID(s):
1803766
PAR ID:
10324377
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
8
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $$\#^{g}S^{n}\times S^{n}$$ relative to a disc in a stable range, for $$2n\geqslant 6$$ . Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range. 
    more » « less
  2. Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology. 
    more » « less
  3. null (Ed.)
    Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d . 
    more » « less
  4. Abstract In this paper we prove a result on the effective generation of pluri-canonical linear systems on foliated surfaces of general type. Fix a function {P:\mathbb{Z}_{\geq 0}\to\mathbb{Z}} , then there exists an integer {N>0} such that if {(X,{\mathcal{F}})} is a canonical or nef model of a foliation of general type with Hilbert polynomial {\chi(X,{\mathcal{O}}_{X}(mK_{\mathcal{F}}))=P(m)} for all {m\in\mathbb{Z}_{\geq 0}} , then {|mK_{\mathcal{F}}|} defines a birational map for all {m\geq N} . On the way, we also prove a Grauert–Riemenschneider-type vanishing theorem for foliated surfaces with canonical singularities. 
    more » « less
  5. We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $$\mathbf{SL}_{n}(\mathbb{Z})$$ . This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $$\mathbf{SL}_{n}(K)$$ for $$K$$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $$\mathbf{SL}_{n}(\mathbb{Z})$$ . 
    more » « less