Verified compilation of open modules (i.e., modules whose functionality depends on other modules) provides a foundation for end-to-end verification of modular programs ubiquitous in contemporary software. However, despite intensive investigation in this topic for decades,the proposed approaches are still difficult to use in practice as they rely on assumptions about the internal working of compilers which make it difficult for external users to apply the verification results. We propose an approach to verified compositional compilation without such assumptions in the setting of verifying compilation of heterogeneous modules written in first-order languages supporting global memory and pointers. Our approach is based on the memory model of CompCert and a new discovery that a Kripke relation with a notion of memory protection can serve as a uniform and composable semantic interface for the compiler passes. By absorbing the rely-guarantee conditions on memory evolution for all compiler passes into this Kripke Memory Relation and by piggybacking requirements on compiler optimizations onto it, we get compositional correctness theorems for realistic optimizing compilers as refinements that directly relate native semantics of open modules and that are ignorant of intermediate compilation processes. Such direct refinements support all the compositionality and adequacy properties essential for verified compilation of open modules. We have applied this approach to the full compilation chain of CompCert with its Clight source language and demonstrated that our compiler correctness theorem is open to composition and intuitive to use with reduced verification complexity through end-to-end verification of non-trivial heterogeneous modules that may freely invoke each other (e.g.,mutually recursively).
more »
« less
Verified compilation of C programs with a nominal memory model
Memory models play an important role in verified compilation of imperative programming languages. A representative one is the block-based memory model of CompCert---the state-of-the-art verified C compiler. Despite its success, the abstraction over memory space provided by CompCert's memory model is still primitive and inflexible. In essence, it uses a fixed representation for identifying memory blocks in a global memory space and uses a globally shared state for distinguishing between used and unused blocks. Therefore, any reasoning about memory must work uniformly for the global memory; it is impossible to individually reason about different sub-regions of memory (i.e., the stack and global definitions). This not only incurs unnecessary complexity in compiler verification, but also poses significant difficulty for supporting verified compilation of open or concurrent programs which need to work with contextual memory, as manifested in many previous extensions of CompCert. To remove the above limitations, we propose an enhancement to the block-based memory model based on nominal techniques; we call it the nominal memory model. By adopting the key concepts of nominal techniques such as atomic names and supports to model the memory space, we are able to 1) generalize the representation of memory blocks to any types satisfying the properties of atomic names and 2) remove the global constraints for managing memory blocks, enabling flexible memory structures for open and concurrent programs. To demonstrate the effectiveness of the nominal memory model, we develop a series of extensions of CompCert based on it. These extensions show that the nominal memory model 1) supports a general framework for verified compilation of C programs, 2) enables intuitive reasoning of compiler transformations on partial memory; and 3) enables modular reasoning about programs working with contextual memory. We also demonstrate that these extensions require limited changes to the original CompCert, making the verification techniques based on the nominal memory model easy to adopt.
more »
« less
- PAR ID:
- 10324533
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 6
- Issue:
- POPL
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1 to 31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Yoshida, Nobuko (Ed.)Modularity - the partitioning of software into units of functionality that interact with each other via interfaces - has been the mainstay of software development for half a century. In case of the C language, the main mechanism for modularity is the compilation unit / header file abstraction. This paper complements programmatic modularity for C with modularity idioms for specification and verification in the context of Verifiable C, an expressive separation logic for CompCert Clight. Technical innovations include (i) abstract predicate declarations – existential packages that combine Parkinson & Bierman’s abstract predicates with their client-visible reasoning principles; (ii) residual predicates, which help enforcing data abstraction in callback-rich code; and (iii) an application to pure (Smalltalk-style) objects that connects code verification to model-level reasoning about features such as subtyping, self, inheritance, and late binding. We introduce our techniques using concrete example modules that have all been verified using the Coq proof assistant and combine to fully linked verified programs using a novel, abstraction-respecting component composition rule for Verifiable C.more » « less
-
Abstract Memory safety is a fundamental correctness property of software. For programs that manipulate linked, heap-allocated data structures, ensuring memory safety requires analyzing their possible shapes. Despite significant advances in shape analysis, existing techniques rely on hand-crafted domains tailored to specific data structures, making them difficult to generalize and extend. This paper presents a novel approach that reduces memory-safety proofs to the verification of heap-less imperative programs, enabling the use of off-the-shelf software verification tools. We achieve this reduction through two complementary program instrumentation techniques: space invariants, which enable symbolic reasoning about unbounded heaps, and flow abstraction, which encodes global heap properties as local flow equations. The approach effectively verifies memory safety across a broad range of programs, including concurrent lists and trees that lie beyond the reach of existing shape analysis tools.more » « less
-
Forster, Yannick; Keller, Chantal (Ed.)Algebraic data types (ADTs) and pattern matching are widely used to write elegant functional programs and to specify program behavior. These constructs are critical to most general-purpose interactive theorem provers (e.g. Lean, Rocq/Coq), first-order SMT-based deductive verifiers (e.g. Dafny, VeriFast), and intermediate verification languages (e.g. Why3). Such features require layers of compilation - in Rocq, pattern matches are compiled to remove nesting, while SMT-based tools further axiomatize ADTs with a first-order specification. However, these critical steps have been omitted from prior formalizations of such toolchains (e.g. MetaRocq). We give the first proved-sound sophisticated pattern matching compiler (based on Maranget’s compilation to decision trees) and first-order axiomatization of ADTs, both based on Why3 implementations. We prove the soundness of exhaustiveness checking, extending pen-and-paper proofs from the literature, and formulate a robustness property with which we find an exhaustiveness-related bug in Why3. We show that many of our proofs could be useful for reasoning about any first-order program verifier supporting ADTs.more » « less
-
Berg, Jeremias; Nordström, Jakob (Ed.)Knowledge compilers convert Boolean formulas, given in conjunctive normal form (CNF), into representations that enable efficient evaluation of unweighted and weighted model counts, as well as a variety of other useful properties. With projected knowledge compilation, the generated representation describes the restriction of the formula to a designated set of data variables, with the remaining ones eliminated by existential quantification. Projected knowledge compilation has applications in a variety of domains, including formal verification and synthesis. This paper describes a formally verified proof framework for certifying the output of a projected knowledge compiler. It builds on an earlier clausal proof framework for certifying the output of a standard knowledge compiler. Extending the framework to projected compilation requires a method to represent Skolem assignments, describing how the quantified variables can be assigned, given an assignment for the data variables. We do so by extending the representation generated by the knowledge compiler to also encode Skolem assignments. We also refine the earlier framework, moving beyond purely clausal proofs to enable scaling certification to larger formulas. We present experimental results obtained by making small modifications to the D4 projected knowledge compiler and extensions of our earlier proof generator. We detail a soundness argument stating that a compiler output that passes our certifier is logically equivalent to the quantified input formula; the soundness argument has been formally validated using the HOL4 proof assistant. The checker also ensures that the compiler output satisfies the properties required for efficient unweighted and weighted model counting. We have developed two proof checkers for the certification framework: one written in C and designed for high performance and one written in CakeML and formally verified in HOL4.more » « less
An official website of the United States government

