Federated Learning (FL) enables edge devices or clients to collaboratively train machine learning (ML) models without sharing their private data. Much of the existing work in FL focuses on efficiently learning a model for a single task. In this paper, we study simultaneous training of multiple FL models using a common set of clients. The few existing simultaneous training methods employ synchronous aggregation of client updates, which can cause significant delays because large models and/or slow clients can bottleneck the aggregation. On the other hand, a naive asynchronous aggregation is adversely affected by stale client updates. We propose FedAST, a buffered asynchronous federated simultaneous training algorithm that overcomes bottlenecks from slow models and adaptively allocates client resources across heterogeneous tasks. We provide theoretical convergence guarantees of FedAST for smooth non-convex objective functions. Extensive experiments over multiple real-world datasets demonstrate that our proposed method outperforms existing simultaneous FL approaches, achieving up to 46.0% reduction in time to train multiple tasks to completion.
more »
« less
Federated Graph Machine Learning: A Survey of Concepts, Techniques, and Applications
Graph machine learning has gained great attention in both academia and industry recently. Most of the graph machine learning models, such as Graph Neural Networks (GNNs), are trained over massive graph data. However, in many realworld scenarios, such as hospitalization prediction in healthcare systems, the graph data is usually stored at multiple data owners and cannot be directly accessed by any other parties due to privacy concerns and regulation restrictions. Federated Graph Machine Learning (FGML) is a promising solution to tackle this challenge by training graph machine learning models in a federated manner. In this survey, we conduct a comprehensive review of the literature in FGML. Specifically, we first provide a new taxonomy to divide the existing problems in FGML into two settings, namely, FL with structured data and structured FL. Then, we review the mainstream techniques in each setting and elaborate on how they address the challenges under FGML. In addition, we summarize the real-world applications of FGML from different domains and introduce open graph datasets and platforms adopted in FGML. Finally, we present several limitations in the existing studies with promising research directions in this field.
more »
« less
- PAR ID:
- 10414114
- Date Published:
- Journal Name:
- ACM SIGKDD Explorations Newsletter
- Volume:
- 24
- Issue:
- 2
- ISSN:
- 1931-0145
- Page Range / eLocation ID:
- 32 to 47
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As a promising distributed machine learning paradigm, Federated Learning (FL) has attracted increasing attention to deal with data silo problems without compromising user privacy. By adopting the classic one-to-multi training scheme (i.e., FedAvg), where the cloud server dispatches one single global model to multiple involved clients, conventional FL methods can achieve collaborative model training without data sharing. However, since only one global model cannot always accommodate all the incompatible convergence directions of local models, existing FL approaches greatly suffer from inferior classification accuracy. To address this issue, we present an efficient FL framework named FedCross, which uses a novel multi-to-multi FL training scheme based on our proposed multi-model cross-aggregation approach. Unlike traditional FL methods, in each round of FL training, FedCross uses multiple middleware models to conduct weighted fusion individually. Since the middleware models used by FedCross can quickly converge into the same flat valley in terms of loss landscapes, the generated global model can achieve a well-generalization. Experimental results on various well-known datasets show that, compared with state-of-the-art FL methods, Fed Cross can significantly improve FL accuracy within both IID and non-IID scenarios without causing additional communication overhead.more » « less
-
Federated learning (FL) has been emerging as a new distributed machine learning paradigm recently. Although FL can protect the data privacy of participants by keeping their training data on local devices, there are recent works raising new privacy concerns especially when workers or the parameter server of FL are untrustworthy or malicious. One effective way to solve the problem is using hierarchical federated learning (HFL) where a few middle-layer aggregators (or called group leaders) are used to aggregate local model updates from workers and send group model updates to the parameter server. In this paper, we consider the participant selection problem of HFL in an edge cloud with multiple FL models, where each model needs to select one parameter server, a few group leaders and a certain amount of workers from edge servers to jointly perform HFL. We first formulate this problem as a non-linear integer programming, aiming to minimize the total learning cost of all models while satisfying the constrained edge resources. We then design a three-stage algorithm by decoupling the original problem into three sub-problems and solving them iteratively. Simulations with real-world datasets and FL models confirm that our proposed algorithm can efficiently reduce the average total learning cost in edge cloud compared with existing methods.more » « less
-
Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients can only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines.more » « less
-
null (Ed.)Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time.more » « less