skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MCMC inversion of the transient and steady-state creep flow law parameters of dunite under dry and wet conditions
Abstract The rheology of the upper mantle impacts a variety of geodynamic processes, including postseismic deformation following great earthquakes and post-glacial rebound. The deformation of upper mantle rocks is controlled by the rheology of olivine, the most abundant upper mantle mineral. The mechanical properties of olivine at steady state are well constrained. However, the physical mechanism underlying transient creep, an evolutionary, hardening phase converging to steady state asymptotically, is still poorly understood. Here, we constrain a constitutive framework that captures transient creep and steady state creep consistently using the mechanical data from laboratory experiments on natural dunites containing at least 94% olivine under both hydrous and anhydrous conditions. The constitutive framework represents a Burgers assembly with a thermally activated nonlinear stress-versus-strain-rate relationship for the dashpots. Work hardening is obtained by the evolution of a state variable that represents internal stress. We determine the flow law parameters for dunites using a Markov chain Monte Carlo method. We find the activation energy $$430\pm 20$$ 430 ± 20   and $$250\pm 10$$ 250 ± 10  kJ/mol for dry and wet conditions, respectively, and the stress exponent $$2.0\pm 0.1$$ 2.0 ± 0.1 for both the dry and wet cases for transient creep, consistently lower than those of steady-state creep, suggesting a separate physical mechanism. For wet dunites in the grain-boundary sliding regime, the grain-size dependence is similar for transient creep and steady-state creep. The lower activation energy of transient creep could be due to a higher jog density of the corresponding soft-slip system. More experimental data are required to estimate the activation volume and water content exponent of transient creep. The constitutive relation used and its associated flow law parameters provide useful constraints for geodynamics applications. Graphical Abstract  more » « less
Award ID(s):
1848192
PAR ID:
10324724
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth, Planets and Space
Volume:
73
Issue:
1
ISSN:
1880-5981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The rheology of the crust and mantle and the interaction of viscoelastic flow with seismic/aseismic slip on faults control the state of stress in the lithosphere over multiple seismic cycles. The rheological behavior of rocks is well constrained in a laboratory setting, but thein situproperties of the lithosphere and its lateral variations remain poorly known. Here, we access the lower‐crustal rheology in Southern California by exploiting 8 years of geodetic postseismic deformation following the 2010 El Mayor‐Cucapah earthquake. The data illuminate viscoelastic flow in the lower crust with lateral variations of effective viscosity correlated with the geological province. We show that a Burgers assembly with dashpots following a nonlinear constitutive law can approximate the temporal evolution of stress and strain rate, indicating the activation of nonlinear transient creep before steady‐state dislocation creep. The transient and background viscosities in the lower crust of the Salton Trough are on the order of ~1018and ~1019 Pa s, respectively, about an order of magnitude lower than those in the surrounding regions. We highlight the importance of transient creep, nonlinear flow laws, and lateral variations of rheological properties to capture the entire history of postseismic relaxation following the El Mayor‐Cucapah earthquake. 
    more » « less
  2. Abstract The constitutive behavior of faults is central to many interconnected aspects of earthquake science, from fault dynamics to induced seismicity, to seismic hazards characterization. Yet, a friction law applicable to the range of temperatures found in the brittle crust and upper mantle is still missing. In particular, rocks often exhibit a transition from steady‐state velocity‐strengthening at room temperature to velocity‐weakening in warmer conditions that is poorly understood. Here, we investigate the effect of competing healing mechanisms on the evolution of frictional resistance in a physical model of rate‐, state‐, and temperature‐dependent friction. The yield strength for fault slip depends on the real area of contact, which is modulated by the competition between the growth and erosion of interfacial micro‐asperities. Incorporating multiple healing mechanisms and rock‐forming minerals with different thermodynamic properties allows a transition of the velocity‐ and temperature‐dependence of friction at steady‐state with varying temperatures. We explain the mechanical data for granite, pyroxene, amphibole, shale, and natural fault gouges with activation energies and stress power exponent for weakening of 10–50 kJ/mol and 55–150, respectively, compatible with subcritical crack growth and inter‐granular flow in the active slip zone. Activation energies for the time‐dependent healing process in the range 90–130 kJ/mol in dry conditions and 20–65 kJ/mol in wet conditions indicate the prominence of viscoelastic collapse of microasperities in the absence of water and of pressure‐solution creep, crack healing, and cementation when assisted by pore fluids. 
    more » « less
  3. Abstract Following the reanalysis of individual experimental runs of some widely cited studies (Jain et al., 2018,https://doi.org/10.1002/2017JB014847), we revisit the global data analysis of Korenaga and Karato (2008,https://doi.org/10.1029/2007JB005100) with a significantly improved version of their Markov chain Monte Carlo inversion. Their algorithm, previously corrected by Mullet et al. () to minimize potential parameter bias, is further modified here to estimate more efficiently interrun biases in global data sets. Using the refined Markov chain Monte Carlo inversion technique, we simultaneously analyze experimental data on the deformation of olivine aggregates compiled from different studies. Realistic composite rheological models, including both diffusion and dislocation creep, are adopted, and the role of dislocation‐accommodated grain boundary sliding is also investigated. Furthermore, the influence of interrun biases on inversion results is studied using experimental and synthetic data. Our analysis shows that existing data can tightly constrain the grain‐size exponent for diffusion creep at ∼2, which is different from the value commonly assumed (p= 3). Different data sets and model assumptions, however, yield nonoverlapping estimates on other flow‐law parameters, and the flow‐law parameters for grain boundary sliding are poorly resolved in most cases. We thus provide a few plausible candidate flow‐law models for olivine rheology to facilitate future geodynamic modeling. The availability of more data that explore a wider range of experimental conditions, especially higher pressures, is essential to improve our understanding of upper mantle rheology. 
    more » « less
  4. Abstract Dislocation‐based dissipation mechanisms potentially control the viscoelastic response of Earth's upper mantle across a variety of geodynamic contexts, including glacial isostatic adjustment, postseismic creep, and seismic‐wave attenuation. However, there is no consensus on which dislocation‐based, microphysical process controls the viscoelastic behavior of the upper mantle. Although both intergranular (plastic anisotropy) and intragranular (backstress) mechanisms have been proposed, there is currently insufficient laboratory data to discriminate between those mechanisms. Here, we present the results of forced‐oscillation experiments in a deformation‐DIA apparatus at confining pressures of 3–7 GPa and temperatures of 298–1370 K. Our experiments tested the viscoelastic response of polycrystalline olivine—the main constituent of the upper mantle—at stress amplitudes from 70 to 2,800 MPa. Mechanical data are complemented by microstructural analyses of grain size, crystallographic preferred orientation, and dislocation density. We observe amplitude‐ and frequency‐dependent attenuation and modulus relaxation and find that numerical solutions of the backstress model match our results well. Therefore, we argue that interactions among dislocations, rather than intergranular processes (e.g., plastic anisotropy or grain boundary sliding), control the viscoelastic behavior of polycrystalline olivine in our experiments. In addition, we present a linearized version of the constitutive equations of the backstress model and extrapolate it to conditions typical of seismic‐wave propagation in the upper mantle. Our extrapolation demonstrates that the backstress model can explain the magnitude of seismic‐wave attenuation in the upper mantle, although some modification is required to explain the weak frequency dependence of attenuation observed in nature and in previous experimental work. 
    more » « less
  5. Abstract. Viscous flow in ice is often described by the Glen flow law – anon-Newtonian, power-law relationship between stress and strain rate with astress exponent n ∼ 3. The Glen law is attributed tograin-size-insensitive dislocation creep; however, laboratory and fieldstudies demonstrate that deformation in ice can be strongly dependent ongrain size. This has led to the hypothesis that at sufficiently lowstresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studiesfind that neither dislocation creep (n ∼ 4) nor grain boundarysliding (n ∼ 1.8) have stress exponents that match the value ofn ∼ 3 in the Glen law. Thus, although the Glen law provides anapproximate description of ice flow in glaciers and ice sheets, itsfunctional form is not explained by a single deformation mechanism. Here weseek to understand the origin of the n ∼ 3 dependence of theGlen law by using the “wattmeter” to model grain size evolution in ice.The wattmeter posits that grain size is controlled by a balance between themechanical work required for grain growth and dynamic grain size reduction.Using the wattmeter, we calculate grain size evolution in two end-membercases: (1) a 1-D shear zone and (2) as a function of depth within anice sheet. Calculated grain sizes match both laboratory data and ice coreobservations for the interior of ice sheets. Finally, we show thatvariations in grain size with deformation conditions result in an effectivestress exponent intermediate between grain boundary sliding and dislocationcreep, which is consistent with a value of n = 3 ± 0.5 over the rangeof strain rates found in most natural systems. 
    more » « less