skip to main content

This content will become publicly available on April 27, 2023

Title: Superconducting properties in doped 2M-WS 2 from first principles
A new member of the transition metal dichalcogenide (TMD) family, 2M-WS 2, has been recently discovered and shown to display superconductivity with a critical temperature (Tc) of 8.8 K, the highest Tc among superconducting TMDs at ambient pressure. Using first-principles calculations combined with the Migdal-Eliashberg formalism, we explore how the superconducting properties of 2M-WS 2 can be enhanced through doping. Mo, Nb, and Ta are used as dopants at the W sites, while Se is used at the S sites. We demonstrate that the monotonous decrease in the Tc observed experimentally for Mo and Se doping is due to the decrease in density of states at the Fermi level and the electron–phonon coupling of the low-energy phonons. In addition, we find that a noticeable increase in the electron–phonon coupling could be achieved when doping with Nb and Ta, leading to an enhancement of the Tc of up to 50% compared to the undoped compound.
Authors:
;
Award ID(s):
2035518
Publication Date:
NSF-PAR ID:
10324965
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single-layer MoS2is a direct-gap semiconductor whose band edges character is dominated by the d-orbitals of the Mo atoms. It follows that substitutional doping of the Mo atoms has a significant impact on the material’s electronic properties, namely the size of the band gap and the position of the Fermi level. Here, density functional theory is used along with the G0W0method to examine the effects of substituting Mo with four different transition metal dopants: Nb, Tc, Ta, and Re. Nb and Ta possess one less valence electron than Mo does and are therefore p-type dopants, while Re and Tc aremore »n-type dopants, having one more valence electron than Mo has. Four types of substitutional structures are considered for each dopant species: isolated atoms, lines, three-atom clusters centered on a S atom (c3s), and three-atom clusters centered on a hole (c3h). The c3h structure is found to be the most stable configuration for all dopant species. However, electronic structure calculations reveal that isolated dopants are preferable for efficient n- or p-type performance. Lastly, it is shown that photoluminescence measurements can provide valuable insight into the atomic structure of the doped material. Understanding these properties of substitutionally-doped MoS2can allow for its successful implementation into cutting-edge solid state devices.

    « less
  2. Abstract

    Oxygen vacancy is known to play an important role for the physical properties in SrTiO3(STO)-based systems. On the surface, rich structural reconstructions had been reported owing to the oxygen vacancies, giving rise to metallic surface states and unusual surface phonon modes. More recently, an intriguing phenomenon of a huge superconducting transition temperature enhancement was discovered in a monolayer FeSe on STO substrate, where the surface reconstructed STO (SR-STO) may play a role. In this work, SR-STO substrates were prepared via thermal annealing in ultra-high vacuum followed by low energy electron diffraction analyses on surface structures. Thin Nb films withmore »different thicknesses (d) were then deposited on the SR-STO. The detailed studies of the magnetotransport and superconducting property in the Al(1 nm)/Nb(d)/SR-STO samples revealed a large positive magnetoresistance and a pronounced resistance peak near the onset of the resistive superconducting transition in the presence of an in-plane field. Remarkably, the amplitude of the resistance peak increases with increasing fields, reaching a value of nearly 57% of the normal state resistance at 9 T. Such resistance peaks were absent in the control samples of Al(1 nm)/Nb(d)/STO and Al(1 nm)/Nb(d)/SiO2. Combining with DFT calculations for SR-STO, we attribute the resistance peak to the interface resistance from the proximity coupling of the superconducting niobium to the field-enhanced long-range magnetic order in SR-STO that arises from the spin-polarized in-gap states due to oxygen vacancies.

    « less
  3. A crucial issue in cuprates is the extent and mechanism of the coupling of the lattice to the electrons and the superconductivity. Here we report Cu K edge extended X-ray absorption fine structure measurements elucidating the internal quantum tunneling polaron (iqtp) component of the dynamical structure in two heavily overdoped superconducting cuprate compounds, tetragonal YSr 2 Cu 2.75 Mo 0.25 O 7.54 with superconducting critical temperature, T c = 84 K and hole density p = 0.3 to 0.5 per planar Cu, and the tetragonal phase of Sr 2 CuO 3.3 with T c = 95 K and p =more »0.6. In YSr 2 Cu 2.75 Mo 0.25 O 7.54 changes in the Cu-apical O two-site distribution reflect a sequential renormalization of the double-well potential of this site beginning at T c , with the energy difference between the two minima increasing by ∼6 meV between T c and 52 K. Sr 2 CuO 3.3 undergoes a radically larger transformation at T c , >1-Å displacements of the apical O atoms. The principal feature of the dynamical structure underlying these transformations is the strongly anharmonic oscillation of the apical O atoms in a double-well potential that results in the observation of two distinct O sites whose Cu–O distances indicate different bonding modes and valence-charge distributions. The coupling of the superconductivity to the iqtp that originates in this nonadiabatic coupling between the electrons and lattice demonstrates an important role for the dynamical structure whereby pairing occurs even in a system where displacements of the atoms that are part of the transition are sufficiently large to alter the Fermi surface. The synchronization and dynamic coherence of the iqtps resulting from the strong interactions within a crystal would be expected to influence this process.« less
  4. The tin-selenide and tin-sulfide classes of materials undergo multiple structural transitions under high pressure leading to periodic lattice distortions, superconductivity, and topologically non-trivial phases, yet a number of controversies exist regarding the structural transformations in these systems. We perform first-principles calculations within the framework of density functional theory and a careful comparison of our results with available experiments on SnSe 2 reveals that the apparent contradictions among high-pressure results can be attributed to differences in experimental conditions. We further demonstrate that under hydrostatic pressure a superstructure can be stabilized above 20 GPa in SnS 2 via a periodic lattice distortionmore »as found recently in the case of SnSe 2 , and that this pressure-induced phase transition is due to the combined effect of Fermi surface nesting and electron–phonon coupling at a momentum wave vector q = (1/3, 1/3, 0). In addition, we investigate the contribution of nonadiabatic corrections on the calculated phonon frequencies, and show that the quantitative agreement between theory and experiment for the high-energy A 1g phonon mode is improved when these effects are taken into account. Finally, we examine the nature of the superconducting state recently observed in SnSe 2 under nonhydrostatic pressure and predict the emergence of superconductivity with a comparable critical temperature in SnS 2 under similar experimental conditions. Interestingly, in the periodic lattice distorted phases, the critical temperature is found to be reduced by an order of magnitude due to the restructuring of the Fermi surface.« less
  5. Antiferroelectric (AFE) materials owing to their double-loop-shaped electric-field ( E ) dependent polarization ( P ) are considered quite promising for energy-storage capacitors. Among the large family of AFE materials, the AgNbO 3 composition is attractive not only because it is environmentally friendly, but also because it has high recoverable energy storage density ( W rec ). However, the reported values of W rec < 4 J cm −3 in Ag(Nb 0.85 Ta 0.15 )O 3 multilayer capacitors are lower than that of the corresponding monolithic ceramic. This is attributed to high leakage current density ( J ) and inferiormore »breakdown strength (BDS) in multilayer structures. Here we demonstrate that MnO 2 doping not only effectively reduces the J value and results in slim P – E loops, but also enhances the breakdown strength (BDS). Multilayer capacitors with composition Ag(Nb 0.85 Ta 0.15 )O 3 + 0.25 wt% MnO 2 (ANT + Mn) demonstrated an excellent W rec = 7.9 J cm −3 and efficiency η = 71%. Extensive investigations were conducted on ANT + Mn multilayer capacitors to demonstrate the role of strain engineering in enhancing the maximum polarization ( P max ) and Δ P values. Results reveal the effect of built-in stress in the active layers of multilayer capacitors on the magnitude of P max , remanent polarization ( P r ) and W rec , and provide guidance towards the development of high energy storage density in multilayer capacitors.« less