skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards an Experimental News User Community as Infrastructure for Recommendation Research
While substantial advances have been made in recommender systems -- both in general and for news -- using datasets, offline analyses, and one-shot experiments, longitudinal studies of real users remain the gold standard, and the only way to effectively measure the impact of recommender system designs (algorithmic and otherwise) on long-term user experience and behavior. While such infrastructure exists for studies within some individual organizations, the extensive cost and effort to build the systems, content streams, and user base make it prohibitive for most researchers to conduct such studies. We propose to develop shared research infrastructure for the research community, and have received funding to gather community input on requirements, resources, and research goals for such an infrastructure. If the full infrastructure proposal is funded, it would result in recruiting a community of thousands of users who agree to use a news delivery application within which various researchers would be install and conduct experiments. In this short paper we outline what we have heard and learned so far and present a set of questions to be directed to INRA attendees to gather their feedback at the workshop.  more » « less
Award ID(s):
2016397
PAR ID:
10324967
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of INRA'21: 9th International Workshop on News Recommendation and Analytics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Personalized news experiences powered by recommender systems permeate our lives and have the potential to influence not only our opinions, but also our decisions. At the same time, the content and viewpoints contained within news recommendations are driven by multiple factors, including both personalization and editorial selection. Explanations could help users gain a better understanding of the factors contributing to the news items selected for them to read. Indeed, recent works show that explanations are essential for users of news recommenders to understand their consumption preferences and set intentions in line with their goals, such as goals for knowledge development and increased diversity of content or viewpoints. We give examples of such works on explanation and interactive interface interventions which have been effective in influencing readers' consumption intentions and behaviors in news recommendations. However, the state‐of‐the‐art in news recommender systems currently fall short in terms of evaluating such interventions in live systems, limiting our ability to measure their true impact on user behavior and opinions. To help understand the true benefit of these interfaces, we therefore call for improving the realism of studies for news. 
    more » « less
  2. null (Ed.)
    The growing amount of online information today has increased opportunity to discover interesting and useful information. Various recommender systems have been designed to help people discover such information. No matter how accurately the recommender algorithms perform, users’ engagement with recommended results has been complained being less than ideal. In this study, we touched on two human-centered objectives for recommender systems: user satisfaction and curiosity, both of which are believed to play roles in maintaining user engagement and sustain such engagement in the long run. Specifically, we leveraged the concept of surprise and used an existing computational model of surprise to identify relevantly surprising health articles aiming at improving user satisfaction and inspiring their curiosity. We designed a user study to first test the validity of the surprise model in a health news recommender system, called LuckyFind. Then user satisfaction and curiosity were evaluated. We find that the computational surprise model helped identify surprising recommendations at little cost of user satisfaction. Users gave higher ratings on interestingness than usefulness for those surprising recommendations. Curiosity was inspired more for those individuals who have a larger capacity to experience curiosity. Over half of the users have changed their preferences after using LuckyFind, either discovering new areas, reinforcing their existing interests, or stopping following those they did not want anymore. The insights of the research will make researchers and practitioners rethink the objectives of today’s recommender systems as being more human-centered beyond algorithmic accuracy. 
    more » « less
  3. With the increase in volume of daily online news items, it is more and more difficult for readers to identify news articles relevant to their interests. Thus, effective recommendation systems are critical for an effective user news consumption experience. Existing news recommendation methods usually rely on the news click history to model user interest. However, there are other signals about user behaviors, such as user commenting activity, which have not been used before. We propose a recommendation algorithm that predicts articles a user may be interested in, given her historical sequential commenting behavior on news articles. We show that following this sequential user behavior the news recommendation problem falls into in the class of session-based recommendation. The techniques in this class seek to model users' sequential and temporal behaviors. While we seek to follow the general directions in this space, we face unique challenges specific to news in modeling temporal dynamics, e.g., users' interests shift over time, users comment irregularly on articles, and articles are perishable items with limited lifespans. We propose a recency-regularized neural attentive framework for session-based news recommendation. The proposed method is able to capture the temporal dynamics of both users and news articles, while maintaining interpretability. We design a lag-aware attention and a recency regularization to model the time effect of news articles and comments. We conduct extensive empirical studies on 3 real-world news datasets to demonstrate the effectiveness of our method. 
    more » « less
  4. Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interest. That is why the recommender systems research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, coverage, and serendipity with the hope of promoting information discovery and sustain users’ interest over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ difference: an open-minded user may favor highly novel or diversified recommendations whereas a conservative user’s appetite for novelty or diversity may not be that large. In this paper, we developed a model to approximate an individual’s curiosity distribution over different levels of stimuli guided by the well-known Wundt curve in Psychology. We measured an item’s surprise level to assess the stimulation level and whether it is in the range of the user’s appetite for stimulus. We then proposed a recommendation system framework that considers both user preference and appetite for stimulus where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’s curiosity to promote intrinsic interest with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high response likelihood. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to traditional approaches. The personalization factor for assessing the stimulus (surprise) strength further helps the recommender achieve smaller (better) inter-user similarity. 
    more » « less
  5. Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore the research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity to experience those ”beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, calledComfort Zone. We then proposed a recommender system framework that considers both user preference and theirComfort Zonewhere the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’sComfort Zonefor stimuli to promote engagement with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further helps the recommender model achieve smaller (better) inter-user similarity. 
    more » « less