skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Shear-induced migration of confined flexible fibers
We report an experimental study of the shear-induced migration of flexible fibers in suspensions confined between two parallel plates. Non-Brownian fiber suspensions are imaged in a rheo-microscopy setup, where the top and the bottom plates counter-rotate and create a Couette flow. Initially, the fibers are near the bottom plate due to sedimentation. Under shear, the fibers move with the flow and migrate towards the center plane between the two walls. Statistical properties of the fibers, such as the mean values of the positions, orientations, and end-to-end lengths of the fibers, are used to characterize the behaviors of the fibers. A dimensionless parameter Λ eff , which compares the hydrodynamic shear stress and the fiber stiffness, is used to analyze the effective flexibility of the fibers. The observations show that the fibers that are more likely to bend exhibit faster migration. As Λ eff increases (softer fibers and stronger shear stresses), the fibers tend to align in the flow direction and the motions of the fibers transition from tumbling and rolling to bending. The bending fibers drift away from the walls to the center plane. Further increasing Λ eff leads to more coiled fiber shapes, and the bending is more frequent and with larger magnitudes, which leads to more rapid migration towards the center. Different behaviors of the fibers are quantified with Λ eff , and the structures and the dynamics of the fibers are correlated with the migration.  more » « less
Award ID(s):
2011750
PAR ID:
10324980
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
3
ISSN:
1744-683X
Page Range / eLocation ID:
514 to 525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Three-dimensional dynamics of flexible fibers in shear flow are studied numerically, with a qualitative comparison to experiments. Initially, the fibers are straight, with different orientations with respect to the flow. By changing the rotation speed of a shear rheometer, we change the ratioAof bending to shear forces. We observe fibers in the flow-vorticity plane, which gives insight into the motion out of the shear plane. The numerical simulations of moderately flexible fibers show that they rotate along effective Jeffery orbits, and therefore the fiber orientation rapidly becomes very close to the flow-vorticity plane, on average close to the flow direction, and the fiber remains in an almost straight configuration for a long time. This ‘ordering’ of fibers is temporary since they alternately bend and straighten while tumbling. We observe numerically and experimentally that if the fibers are initially in the compressional region of the shear flow, they can undergo compressional buckling, with a pronounced deformation of shape along their whole length during a short time, which is in contrast to the typical local bending that originates over a long time from the fiber ends. We identify differences between local and compressional bending and discuss their competition, which depends on the initial orientation of the fiber and the bending stiffness ratioA. There are two main finding. First, the compressional buckling is limited to a certain small range of the initial orientations, excluding those from the flow-vorticity plane. Second, since fibers straighten in the flow-vorticity plane while tumbling, the compressional buckling is transient—it does not appear for times longer than 1/4 of the Jeffery period. For larger times, bending of fibers is always driven by their ends.

     
    more » « less
  2. Hypothesis: The dip coating of suspensions made of monodisperse non-Brownian spherical particles dispersed in a Newtonian fluid leads to different coating regimes depending on the ratio of the particle diameter to the thickness of the film entrained on the substrate. In particular, dilute particles dispersed in the liquid are entrained only above a threshold value of film thickness. In the case of anisotropic particles, in particular fibers, the smallest characteristic dimension will control the entrainment of the particle. Furthermore, it is possible to control the orientation of the anisotropic particles depending on the substrate geometry. In the thick film regime, the Landau-Levich-Derjaguin model remains valid if one account for the change in viscosity. Experiment: To test the hypotheses, we performed dip-coating experiments with dilute suspensions of non-Brownian fibers with different length-to-diameter aspect ratios. We characterize the number of fibers entrained on the surface of the substrate as a function of the withdrawal velocity, allowing us to estimate a threshold capillary number below which all the particles remain in the liquid bath. Besides, we measure the angular distribution of the entrained fibers for two different substrate geometries: flat plates and cylindrical rods. We then measure the film thickness for more concentrated fiber suspensions. Findings: The entrainment of the fibers on a flat plate and a cylindrical rod is primarily controlled by the smaller characteristic length of the fibers: their diameter. At first order, the entrainment threshold scales similarly to that of spherical particles. The length of the fibers only appears to have a minor influence on the entrainment threshold. No preferential alignment is observed for non-Brownian fibers on a flat plate, except for very thin films, whereas the fibers tend to align themselves along the axis of a cylindrical rod for a large enough ratio of the fiber length to the radius of the cylindrical rod. The Landau-Levich-Derjaguin law is recovered for more concentrated suspension by introducing an effective capillary number accounting for the change in viscosity. 
    more » « less
  3. The addition of short carbon fibers to the feedstock of large-scale polymer extrusion/deposition additive manufacturing results in significant increases in mechanical properties dependent on the fiber distribution and orientation in the beads. In order to analyze those factors, a coupled computational fluid dynamics (CFD) and discrete element modeling (DEM) approach is developed to simulate the behavior of fibers in an extrusion/deposition nozzle flow after calibrations in simple shear flows. The DEM model uses bonded discrete particles to make up flexible and breakable fibers that are first calibrated to match Jeffery’s orbit and to produce interactions that are consistent with Advani-Tucker orientation tensor predictions. The DEM/CFD model is then used to simulate the processing of fiber suspensions in the variable flow and geometries present in extrusion/deposition nozzles. The computed results provide enhanced insight into the evolution of fiber orientation and distribution during extrusion/deposition as compared to existing models through individual fiber tracking over time and space on multiple parameters of interest such as orientation, flexure, and contact forces. 
    more » « less
  4. Rigid fibers suspended in a viscous, Newtonian fluid at high concentrations can be aligned in the direction perpendicular to the flow-gradient plane (vorticity direction) by applying an oscillatory shear flow. A simple model, which considers only excluded volume and self-mobilities, can accurately predict the orientation distributions measured in experiments by Franceschini et al. [“Transverse alignment of fibers in a periodically sheared suspension: An absorbing phase transition with a slowly varying control parameter,” Phys. Rev. Lett. 107, 250603 (2011)10.1103/PhysRevLett.107.250603]. Furthermore, simulations reveal that the alignment of the fibers in the vorticity direction depends strongly on the presence of the bounding walls.

     
    more » « less
  5. Mud is a suspension of fine-grained particles (sand, silt, and clay) in water. The interaction of clay minerals in mud gives rise to complex rheological behaviors, such as yield stress, thixotropy, and viscoelasticity. Here, we experimentally examine the flow behaviors of kaolinite clay suspensions, a model mud, using steady shear rheometry. The flow curves exhibit both yield stress and rheological hysteresis behaviors for various kaolinite volume fractions (ϕk). Further understanding of these behaviors requires fitting to existing constitutive models, which is challenging due to numerous fitting parameters. To this end, we employ a Bayesian inference method, Markov chain Monte Carlo, to fit the experimental flow curves to a microstructural viscoelastic model. The method allows us to estimate the rheological properties of the clay suspensions, such as viscosity, yield stress, and relaxation time scales. The comparison of the inherent relaxation time scales suggests that kaolinite clay suspensions are strongly viscoelastic and weakly thixotropic at relatively low ϕk, while being almost inelastic and purely thixotropic at high ϕk. Overall, our results provide a framework for predictive model fitting to elucidate the rheological behaviors of natural materials and other structured fluids.

     
    more » « less