skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: OpenWaters: Photorealistic Simulations For Underwater Computer Vision
In this paper, we present OpenWaters, a real-time open-source underwater simulation kit for generating photorealistic underwater scenes. OpenWaters supports creation of massive amount of underwater images by emulating diverse real-world conditions. It allows for fine controls over every variable in a simulation instance, including geometry, rendering parameters like ray-traced water caustics, scattering, and ground-truth labels. Using underwater depth (distance between camera and object) estimation as the use-case, we showcase and validate the capabilities of OpenWaters to model underwater scenes that are used to train a deep neural network for depth estimation. Our experimental evaluation demonstrates depth estimation using synthetic underwater images with high accuracy, and feasibility of transfer-learning of features from synthetic to real-world images.  more » « less
Award ID(s):
2000475
PAR ID:
10325025
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 15th International Conference on Underwater Networks & Systems
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Underwater image restoration aims to recover color, contrast, and appearance in underwater scenes, crucial for fields like marine ecology and archaeology. While pixel-domain diffusion methods work for simple scenes, they are computationally heavy and produce artifacts in complex, depth-varying scenes. We present a single-step latent diffusion method, SLURPP (Single-step Latent Underwater Restoration with Pretrained Priors), that overcomes these limitations by combining a novel network architecture with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models - which encode strong priors on the geometry and depth of scenes with an explicit scene decomposition, which allows one to model and account for the effects of light attenuation and backscattering. To train SLURPP, we design a physics-based underwater image synthesis pipeline that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. We evaluate our method extensively on both synthetic and real-world benchmarks and demonstrate state-of-the-art performance. 
    more » « less
  2. We propose a novel method for combining synthetic and real images when training networks to determine geomet- ric information from a single image. We suggest a method for mapping both image types into a single, shared domain. This is connected to a primary network for end-to-end train- ing. Ideally, this results in images from two domains that present shared information to the primary network. Our experiments demonstrate significant improvements over the state-of-the-art in two important domains, surface normal estimation of human faces and monocular depth estimation for outdoor scenes, both in an unsupervised setting. 
    more » « less
  3. We propose a novel method for combining synthetic and real images when training networks to determine geomet- ric information from a single image. We suggest a method for mapping both image types into a single, shared domain. This is connected to a primary network for end-to-end train- ing. Ideally, this results in images from two domains that present shared information to the primary network. Our experiments demonstrate significant improvements over the state-of-the-art in two important domains, surface normal estimation of human faces and monocular depth estimation for outdoor scenes, both in an unsupervised setting. 
    more » « less
  4. Ground truth depth information is necessary for many computer vision tasks. Collecting this information is chal-lenging, especially for outdoor scenes. In this work, we propose utilizing single-view depth prediction neural networks pre-trained on synthetic scenes to generate relative depth, which we call pseudo-depth. This approach is a less expen-sive option as the pre-trained neural network obtains ac-curate depth information from synthetic scenes, which does not require any expensive sensor equipment and takes less time. We measure the usefulness of pseudo-depth from pre-trained neural networks by training indoor/outdoor binary classifiers with and without it. We also compare the difference in accuracy between using pseudo-depth and ground truth depth. We experimentally show that adding pseudo-depth to training achieves a 4.4% performance boost over the non-depth baseline model on DIODE, a large stan-dard test dataset, retaining 63.8% of the performance boost achieved from training a classifier on RGB and ground truth depth. It also boosts performance by 1.3% on another dataset, SUN397, for which ground truth depth is not avail-able. Our result shows that it is possible to take information obtained from a model pre-trained on synthetic scenes and successfully apply it beyond the synthetic domain to real-world data. 
    more » « less
  5. We propose to harness the potential of simulation for the semantic segmentation of real-world self-driving scenes in a domain generalization fashion. The segmentation network is trained without any data of target domains and tested on the unseen target domains. To this end, we propose a new approach of domain randomization and pyramid consistency to learn a model with high generalizability. First, we propose to randomize the synthetic images with the styles of real images in terms of visual appearances using auxiliary datasets, in order to effectively learn domain-invariant representations. Second, we further enforce pyramid consistency across different “stylized” images and within an image, in order to learn domaininvariant and scale-invariant features, respectively. Extensive experiments are conducted on the generalization from GTA and SYNTHIA to Cityscapes, BDDS and Mapillary; and our method achieves superior results over the stateof- the-art techniques. Remarkably, our generalization results are on par with or even better than those obtained by state-of-the-art simulation-to-real domain adaptation methods, which access the target domain data at training time. 
    more » « less