skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Equivariant Log Concavity and Representation Stability
Abstract We expand upon the notion of equivariant log concavity and make equivariant log concavity conjectures for Orlik–Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik–Terao algebras of hyperplane arrangements. In the case of the Coxeter arrangement for the Lie algebra $$\mathfrak{s}\mathfrak{l}_n$$, we exploit the theory of representation stability to give computer-assisted proofs of these conjectures in low degree.  more » « less
Award ID(s):
1954050 2039316
PAR ID:
10325310
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety. 
    more » « less
  2. Abstract We establish a connection between the algebraic geometry of the type permutohedral toric variety and the combinatorics of delta‐matroids. Using this connection, we compute the volume and lattice point counts of type generalized permutohedra. Applying tropical Hodge theory to a new framework of “tautological classes of delta‐matroids,” modeled after certain vector bundles associated to realizable delta‐matroids, we establish the log‐concavity of a Tutte‐like invariant for a broad family of delta‐matroids that includes all realizable delta‐matroids. Our results include new log‐concavity statements for all (ordinary) matroids as special cases. 
    more » « less
  3. Abstract Let $$\Theta _n = (\theta _1, \dots , \theta _n)$$ and $$\Xi _n = (\xi _1, \dots , \xi _n)$$ be two lists of $$n$$ variables, and consider the diagonal action of $${{\mathfrak {S}}}_n$$ on the exterior algebra $$\wedge \{ \Theta _n, \Xi _n \}$$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$$FDR_n$$ obtained from $$\wedge \{ \Theta _n, \Xi _n \}$$ by modding out by the ideal generated by the $${{\mathfrak {S}}}_n$$-invariants with vanishing constant term. On the other hand, the 2nd author described an action of $${{\mathfrak {S}}}_n$$ on the vector space with basis given by noncrossing set partitions of $$\{1,\dots ,n\}$$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalan-dimensional submodule of $$FDR_n$$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an $${{\mathfrak {S}}}_n$$-equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution. 
    more » « less
  4. Abstract Let $$\textsf {X}$$ and $$\textsf {X}^{!}$$ be a pair of symplectic varieties dual with respect to 3D mirror symmetry. The $$K$$-theoretic limit of the elliptic duality interface is an equivariant $$K$$-theory class $$\mathfrak {m} \in K(\textsf {X}\times \textsf {X}^{!})$$. We show that this class provides correspondences $$ \begin{align*} & \Phi_{\mathfrak{m}}: K(\textsf{X}) \leftrightarrows K(\textsf{X}^{!}) \end{align*}$$mapping the $$K$$-theoretic stable envelopes to the $$K$$-theoretic stable envelopes. This construction allows us to relate various representation theoretic objects of $$K(\textsf {X})$$, such as action of quantum groups, quantum dynamical Weyl groups, $$R$$-matrices, etc., to those for $$K(\textsf {X}^{!})$$. In particular, we relate the wall $$R$$-matrices of $$\textsf {X}$$ to the $$R$$-matrices of the dual variety $$\textsf {X}^{!}$$. As an example, we apply our results to $$\textsf {X}=\textrm {Hilb}^{n}({{\mathbb {C}}}^2)$$—the Hilbert scheme of $$n$$ points in the complex plane. In this case, we arrive at the conjectures of Gorsky and Negut from [10]. 
    more » « less
  5. We study combinatorial inequalities for various classes of set systems: matroids, polymatroids, poset antimatroids, and interval greedoids. We prove log-concave inequal- ities for counting certain weighted feasible words, which generalize and extend several previous results establishing Mason conjectures for the numbers of independent sets of matroids. Notably, we prove matching equality conditions for both earlier inequalities and our extensions. In contrast with much of the previous work, our proofs are combinatorial and employ nothing but linear algebra. We use the language formulation of greedoids which allows a linear algebraic setup, which in turn can be analyzed recursively. The underlying non- commutative nature of matrices associated with greedoids allows us to proceed beyond polymatroids and prove the equality conditions. As further application of our tools, we rederive both Stanley’s inequality on the number of certain linear extensions, and its equality conditions, which we then also extend to the weighted case. 
    more » « less