skip to main content

Title: Extremely anisotropic van der Waals thermal conductors
Abstract The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials 1–3 . Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis 4,5 . However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS 2 , one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS 2 (57 ± 3 mW m −1  K −1 ) and WS 2 (41 ± 3 mW m −1  K −1 ) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS 2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.  more » « less
Award ID(s):
1719875 2011854
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
660 to 665
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hafnium pentatelluride (HfTe5) has attracted extensive interest due to its exotic electronic, optical, and thermal properties. As a highly anisotropic crystal (layered structure with in‐plane chains), it has highly anisotropic electrical‐transport properties, but the anisotropy of its thermal‐transport properties has not been established. Here, accurate experimental measurements and theoretical calculations are combined to resolve this issue. Time‐domain thermoreflectance measurements find a highly anisotropic thermal conductivity, 28:1:8, with values of 11.3 ± 2.2, 0.41 ± 0.04, and 3.2 ± 2.0 W m-1K-1along the in‐planea‐axis, through‐planeb‐axis, and in‐planec‐axis, respectively. This anisotropy is even larger than what was recently established for ZrTe5(12:1:6), but the individual values are somewhat higher, even though Zr has a smaller atomic mass than Hf. Density‐functional‐theory calculations predict thermal conductivities in good agreement with the experimental data, provide comprehensive insights into the results, and reveal the origin of the apparent anomaly of the relative thermal conductivities of the two pentatellurides. These results establish that HfTe5and ZrTe5, and by implication their alloys, have highly anisotropic and ultralow through‐plane thermal conductivities, which can provide guidance for the design of materials for new directional‐heat‐management applications and potentially other thermal functionalities.

    more » « less
  2. Abstract

    New technologies are emerging which allow us to manipulate and assemble 2-dimensional (2D) building blocks, such as graphene, into synthetic van der Waals (vdW) solids. Assembly of such vdW solids has enabled novel electronic devices and could lead to control over anisotropic thermal properties through tuning of inter-layer coupling and phonon scattering. Here we report the systematic control of heat flow in graphene-based vdW solids assembled in a layer-by-layer (LBL) fashion. In-plane thermal measurements (between 100 K and 400 K) reveal substrate and grain boundary scattering limit thermal transport in vdW solids composed of one to four transferred layers of graphene grown by chemical vapor deposition (CVD). Such films have room temperature in-plane thermal conductivity of ~400 Wm−1 K−1. Cross-plane thermal conductance approaches 15 MWm−2 K−1for graphene-based vdW solids composed of seven layers of graphene films grown by CVD, likely limited by rotational mismatch between layers and trapped particulates remnant from graphene transfer processes. Our results provide fundamental insight into the in-plane and cross-plane heat carrying properties of substrate-supported synthetic vdW solids, with important implications for emerging devices made from artificially stacked 2D materials.

    more » « less
  3. Zintl phase Mg 3 Sb 2 , which has ultra-low thermal conductivity, is a promising anisotropic thermoelectric material. It is worth noting that the prediction and experiment value of lattice thermal conductivity ( κ ) maintain a remarkable difference, troubling the development and application. Thus, we firstly included the four-phonon scattering processes effect and performed the Peierls–Boltzmann transport equation (PBTE) combined with the first-principles lattice dynamics to study the lattice thermal transport in Mg 3 Sb 2 . The results showed that our theoretically predicted κ is consistent with the experimentally measured, breaking through the limitations of the traditional calculation methods. The prominent four-phonon scatterings decreased phonon lifetime, leading to the κ of Mg 3 Sb 2 at 300 K from 2.45 (2.58) W m −1 K −1 to 1.94 (2.19) W m −1 K −1 along the in (cross)-plane directions, respectively, and calculation accuracy increased by 20%. This study successfully explains the lattice thermal transport behind mechanism in Mg 3 Sb 2 and implies guidance to advance the prediction accuracy of thermoelectric materials. 
    more » « less
  4. Abstract

    Understanding the fundamentals of nanoscale heat propagation is crucial for next‐generation electronics. For instance, weak van der Waals bonds of layered materials are known to limit their thermal boundary conductance (TBC), presenting a heat dissipation bottleneck. Here, a new nondestructive method is presented to probe heat transport in nanoscale crystalline materials using time‐resolved X‐ray measurements of photoinduced thermal strain. This technique directly monitors time‐dependent temperature changes in the crystal and the subsequent relaxation across buried interfaces by measuring changes in thec‐axis lattice spacing after optical excitation. Films of five different layered transition metal dichalcogenides MoX2[X = S, Se, and Te] and WX2[X = S and Se] as well as graphite and a W‐doped alloy of MoTe2are investigated. TBC values in the range 10–30 MW m−2K−1are found, onc‐plane sapphire substrates at room temperature. In conjunction with molecular dynamics simulations, it is shown that the high thermal resistances are a consequence of weak interfacial van der Waals bonding and low phonon irradiance. This work paves the way for an improved understanding of thermal bottlenecks in emerging 3D heterogeneously integrated technologies.

    more » « less
  5. Abstract

    Heat dissipation is a major limitation of high‐performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra‐thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra‐high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single‐layer transition metal dichalcogenides MX2(MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate‐supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out‐of‐plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2and hBN reaches 74 ± 25 MW m−2K−1, which is at least ten times higher than the interfacial thermal conductance of MX2in non‐encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra‐high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN‐encapsulated nanoelectronic devices with enhanced thermal management.

    more » « less