skip to main content


Title: Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials
The rise of innovation in the electrical industry is driven by the controlled design of new materials. The hybrid materials based on magnetite/nanocellulose are highly interesting due to their various applications in medicine, ecology, catalysis and electronics. In this study, the structure and morphology of nanocellulose/magnetite hybrid nanomaterials were investigated. The effect of nanocellulose loading on the crystal structure of synthesized composites was investigated by XRD and FTIR methods. The presented study reveals that the interaction between the cellulose and magnetic nanoparticles depends on the nanocellulose content. Further, a transition from cellulose II to cellulose I allomorph is observed. SEM and EDS are employed to determine the variation in morphology with changes in component concentrations. By the calculation of magnetic interactions between adjacent Fe3+ and Fe2+ ions within composites, it is determined that ferromagnetic coupling predominates.  more » « less
Award ID(s):
2122044 2101041
NSF-PAR ID:
10325522
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI Polymers
Date Published:
Journal Name:
Polymers
Volume:
14
Issue:
9
ISSN:
2073-4360
Page Range / eLocation ID:
1819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hybrid nanocellulose-based foams are a desirable class of low-density and porous materials for their potential in many applications. This study aims at characterizing and understanding the structure-properties relationship of four foam formulations prepared from combinations of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and kaolin-microfibrillated cellulose composite. All the foams were crosslinked with a polyamide-epichlorohydrin crosslinker (Polycup) to impart stability under wet conditions without additional functionalization. Foams containing 25 wt% kaolin exhibited excellent shape recovery promoted by a higher load of crosslinker (5 wt%), and superior compressive properties. The addition of CNC at 33.3 wt% and 50 wt% did not seem to enhance the properties of the foam and also reduced the specific surface area. A preliminary comparative study between the four tested formulations was conducted to assess the feasibility of the foam as an adsorbent of methylene blue dye.

     
    more » « less
  2. null (Ed.)
    Rice husks are an agricultural residue of great annual production and have a high cellulose content. In this study, we have prepared highly charged carboxyl cellulose nanofibers (CNFs) from rice husks using the TEMPO-oxidation method and the extracted CNFs were evaluated as an adsorbent for the removal of lead( ii ) and lanthanum( iii ) (Pb( ii ) and La( iii )) ions from contaminated water. Three different forms of nanocellulose adsorbents were prepared: suspension, freeze-dried, and nanocomposite containing magnetic nanoparticles, where their adsorption performance was tested against the removal of the two chosen heavy metal ions. The maximum adsorption capacity of rice husk based CNFs was found to be the highest in the nanocellulose suspension, i.e. , 193.2 mg g −1 for Pb( ii ) and 100.7 mg g −1 for La( iii ). The separation of the used adsorbent in the suspension was further facilitated by the gelation of the CNFs and metal cations, where the resulting floc could be removed by gravity-driven filtration. The absorption mechanism of the investigated CNF system is mainly due to electrostatic interactions between negatively charged carboxylate groups and multivalent metal ions. It was found that 90% lanthanum content in the form of lanthanum oxychloride (determined by X-ray powder diffraction) could be obtained by incinerating the CNF/LaCl 3 gel. This study demonstrates a viable and sustainable solution to upcycle agricultural residues into remediation nanomaterials for the removal and recovery of toxic heavy metal ions from contaminated water. 
    more » « less
  3. null (Ed.)
    Renewable nanocellulose materials received increased attention owing to their small dimensions, high specific surface area, high mechanical characteristics, biocompatibility, and compostability. Nanocellulose coatings are among many interesting applications of these materials to functionalize different by composition and structure surfaces, including plastics, polymer coatings, and textiles with broader applications from food packaging to smart textiles. Variations in porosity and thickness of nanocellulose coatings are used to adjust a load of functional molecules and particles into the coatings, their permeability, and filtration properties. Mechanical stability of nanocellulose coatings in a wet and dry state are critical characteristics for many applications. In this work, nanofibrillated and nanocrystalline cellulose coatings deposited on the surface of polymer films and textiles made of cellulose, polyester, and nylon are studied using atomic force microscopy, ellipsometry, and T-peel adhesion tests. Methods to improve coatings’ adhesion and stability using physical and chemical cross-linking with added polymers and polycarboxylic acids are analyzed in this study. The paper reports on the effect of the substrate structure and ability of nanocellulose particles to intercalate into the substrate on the coating adhesion. 
    more » « less
  4. Polymer templates play an essential role in the robust infiltration-based synthesis of functional multicomponent heterostructures with controlled structure, porosity, and composition. Such heterostructures are be used as hybrid organic–inorganic composites or as all-inorganic systems once the polymer templates are removed. Using iron oxide/alumina heterostructures formed by two-step infiltration of polystyrene-block-polyvinyl pyridine block copolymer with iron and aluminum precursors from the solution and vapor-phases, respectively, we show that the phase and morphology of iron oxide nanoparticles dramatically depend on the approach used to remove the polymer. We demonstrate that thermal and plasma oxidative treatments result in iron oxide nanoparticles with either solid or hollow morphologies, respectively, that lead to different magnetic properties of the resulting materials. Our study extends the boundaries of structure manipulations in multicomponent heterostructures synthesized using polymer infiltration synthesis, and hence their properties. 
    more » « less
  5. Abstract

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose‐based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy‐related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose‐based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology‐related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose‐based nanomaterials in lithium‐ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose‐based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed.

     
    more » « less