skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inhibition of lithium dendrite growth with highly concentrated ions: cellular automaton simulation and surrogate model with ensemble neural networks
We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts for the effect of the physical properties of small ions such as inorganic ions and large salt ions that mimic ionic liquids (ILs) on lithium dendrite growth. In our cellular automaton model, molecular and atomistic details are largely coarse-grained to reduce the number of model parameters. During lithium deposition, the cations of the salt and ILs form positively charged electrostatic shields around the tip of the dendrites, and the anions of the salt and ILs form negative local potential lumps in adjacent areas to the dendrite. Both of the effects change the distribution of the electrostatic potential and notably inhibit dendrite formation between electrodes. The applied voltage and the physical properties of the salt ions and ILs, such as the size of the ions, the size asymmetry between the cation and anion, the dielectric constant, the excluded volume of the ions, and the model parameter η , notably affect electric-field screening and hence the variation in the local potential, resulting in substantial changes in the aspect ratio and the average height of the dendrites. Our present results suggest that the large salts such as ILs more significantly inhibit the dendrite growth than the small ions, mainly because the ions highly dissociated in ILs can participate in electrostatic shielding to a greater degree. To reduce the computational complexity and burden of the MC simulation, we also constructed a surrogate model with ensemble neural networks.  more » « less
Award ID(s):
1944211 1805938
PAR ID:
10325535
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
7
Issue:
3
ISSN:
2058-9689
Page Range / eLocation ID:
260 to 272
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instabilities during metal electrodeposition create dendrites on the plating surfaces. In high energy density lithium metal batteries (LMBs) dendrite growth causes safety issues and accelerated aging. In this paper, analytical models predict that dendrite growth can be controlled and potentially eliminated by small advective flows normal to the surface of lithium metal electrode. Electrolyte flow towards the Li metal electrode lowers the dendrite growth rate, overpotential, and impedance. Flow in the opposite direction, however, enhances the dendrite growth. For every current density, there exists a critical velocity above which dendrite growth can be totally eliminated. The critical velocity increases almost linearly with increasing current density. For typical current densities and inter-electrode separation, the critical velocity is very small, indicating the potential for practical application. 
    more » « less
  2. Lithium metal batteries (LMBs) are considered one of the most promising next-generation rechargeable batteries due to their high specific capacity. However, severe dendrite growth and subsequent formation of dead lithium (Li) during the battery cycling process impede its practical application. Although extensive experimental studies have been conducted to investigate the cycling process, and several theoretical models were developed to simulate the Li dendrite growth, there are limited theoretical studies on the dead Li formation, as well as the entire cycling process. Herein, we developed a phase-field model to simulate both electroplating and stripping process in a bare Li anode and Li anode covered with a protective layer. A step function is introduced in the stripping model to capture the dynamics of dead Li. Our simulation clearly shows the growth of dendrites from a bare Li anode during charging. These dendrites detach from the bulk anode during discharging, forming dead Li. Dendrite growth becomes more severe in subsequent cycles due to enhanced surface roughness of the Li anode, resulting in an increasing amount of dead Li. In addition, it is revealed that dendrites with smaller base diameters detach faster at the base and produce more dead lithium. Meanwhile, the Li anode covered with a protective layer cycles smoothly without forming Li dendrite and dead Li. However, if the protective layer is fractured, Li metal preferentially grows into the crack due to enhanced Li-ion (Li+) flux and forms a dendrite structure after penetration through the protective layer, which accelerates the dead Li formation in the subsequent stripping process. Our work thus provides a fundamental understanding of the mechanism of dead Li formation during the charging/discharging process and sheds light on the importance of the protective layer in the prevention of dead Li in LMBs. 
    more » « less
  3. Lithium (Li) metal anodes have regained intensive interest in recent years due to the ever-increasing demand for next-generation high energy battery technologies. Li metal, unfortunately, suffers from poor cycling stability and low efficiency as well as from the formation of dangerous Li dendrites, raising safety concerns. Utilizing solid-state electrolytes (SSEs) to prevent Li dendrite growth provides a promising approach to tackle the challenge. However, recent studies indicate that Li dendrites easily form at high current densities, which calls for full investigation of the fundamental mechanisms of Li dendrite formation within SSEs. Herein, the origin and evolution of Li dendrite growth through SSEs have been studied and compared by using Li 6.1 Ga 0.3 La 3 Zr 2 O 12 (LLZO) and NASICON-type Li 2 O–Al 2 O 3 –P 2 O 5 –TiO 2 –GeO 2 (LATP) pellets as the separators. We discover that a solid electrolyte interphase (SEI)-like interfacial layer between Li and SSE plays a critical role in alleviating the growth of dendritic Li, providing new insights into the interface between SSE and Li metal to enable future all solid-state batteries. 
    more » « less
  4. Lithium metal as an anode has been widely accepted due to its higher negative electrochemical potential and theoretical capacity. Nevertheless, the existing safety and cyclability issues limit lithium metal anodes from practical use in high-energy density batteries. Repeated Li deposition and dissolution processes upon cycling lead to the formation of dendrites at the interface which results in reduced Li availability for electrochemical reactions, disruption in Li transport through the interface and increased safety concerns due to short circuiting. Here, we demonstrate a novel strategy using Ionic Liquid Crystals (ILCs) as the electrolyte cum pseudo-separator to suppress dendrite growth with their anisotropic properties controlling Li-ion mass transport. A thermotropic ILC with two-dimensional Li-ion conducting pathways was synthesized and characterized. Microscopic and spectroscopic analyses elucidate that the ILC formed with a smectic A phase, which can be utilized for wide temperature window operation. The results of electrochemical studies corroborate the efficacy of ILC electrolytes in mitigating dendrite formation even after 850 hours and it is further substantiated by numerical simulation and the mechanism involved in dendritic suppression was deduced. 
    more » « less
  5. Abstract Electrostatic gating of two-dimensional (2D) materials with ionic liquids (ILs), leading to the accumulation of high surface charge carrier densities, has been often exploited in 2D devices. However, the intrinsic liquid nature of ILs, their sensitivity to humidity, and the stress induced in frozen liquids inhibit ILs from constituting an ideal platform for electrostatic gating. Here we report a lithium-ion solid electrolyte substrate, demonstrating its application in high-performance back-gated n-type MoS2and p-type WSe2transistors with sub-threshold values approaching the ideal limit of 60 mV/dec and complementary inverter amplifier gain of 34, the highest among comparable amplifiers. Remarkably, these outstanding values were obtained under 1 V power supply. Microscopic studies of the transistor channel using microwave impedance microscopy reveal a homogeneous channel formation, indicative of a smooth interface between the TMD and underlying electrolytic substrate. These results establish lithium-ion substrates as a promising alternative to ILs for advanced thin-film devices. 
    more » « less