skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal stability of epitaxial α -Ga 2 O 3 and (Al,Ga) 2 O 3 layers on m-plane sapphire
Award ID(s):
1719875
PAR ID:
10325628
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
119
Issue:
6
ISSN:
0003-6951
Page Range / eLocation ID:
062102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100  μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier. 
    more » « less
  3. The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C. 
    more » « less