skip to main content


Search for: All records

Award ID contains: 1839196

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The recently discovered spin-active boron vacancy (V$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$B) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system fromD3htoC2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.

     
    more » « less
  2. High-contrast optically detected magnetic resonance is a valuable property for reading out the spin of isolated defect colour centres at room temperature. Spin-active single defect centres have been studied in wide bandgap materials including diamond, SiC and hexagonal boron nitride, each with associated advantages for applications. We report the discovery of optically detected magnetic resonance in two distinct species of bright, isolated defect centres hosted in GaN. In one group, we find negative optically detected magnetic resonance of a few percent associated with a metastable electronic state, whereas in the other, we find positive optically detected magnetic resonance of up to 30% associated with the ground and optically excited electronic states. We examine the spin symmetry axis of each defect species and establish coherent control over a single defect’s ground-state spin. Given the maturity of the semiconductor host, these results are promising for scalable and integrated quantum sensing applications. 
    more » « less
    Free, publicly-accessible full text available February 12, 2025
  3. Multimode lasing at sub-300 nm wavelengths is demonstrated by optical pumping in AlGaN heterostructures grown on single-crystal AlN substrates by plasma-assisted molecular beam epitaxy. Edge-emitting ridge-based Fabry–Pérot cavities are fabricated with the epitaxial AlN/AlGaN double heterostructure by a combined inductively coupled plasma reactive ion etch and tetramethylammonium hydroxide etch. The emitters exhibit peak gain at 284 nm and modal linewidths on the order of 0.1 nm at room temperature. The applied growth technique and its chemical and heterostructural design characteristics offer certain unique capabilities toward further development of electrically injected AlGaN laser diodes. 
    more » « less
  4. Abstract This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N 2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination. 
    more » « less
  5. null (Ed.)
  6. Recently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucidate the root causes behind the enhanced injection efficiency by employing mature laser diode structures with optimized heterojunction GaN/In0.17Ga0.83N/GaN TJs and UID GaN spacers to separate the optical mode from the heavily doped absorbing p-cladding regions. In such laser structures, polarization offsets at the electron blocking layer, spacer, and quantum barrier interfaces play discernable roles in carrier transport. By comparing a top-TJ structure to a bottom-TJ structure, and correlating features in the electroluminescence, capacitance-voltage, and current-voltage characteristics to unique signatures of the N- and Ga-polar polarization heterointerfaces in energy band diagram simulations, we identify that improved hole injection at low currents, and improved electron blocking at high currents, leads to higher injection efficiency and higher output power for the bottom-TJ device throughout 5 orders of current density (0.015–1000 A/cm2). Moreover, even with the addition of a UID GaN spacer, differential resistances are state-of-the-art, below 7 × 10−4Ωcm2. These results highlight the virtues of the bottom-TJ geometry for use in high-efficiency laser diodes.

     
    more » « less
  7. null (Ed.)
    igh internal quantum efficiency (85%) was realized from the AlGaN-delta-GaN quantum well (QW) structure grown on a conventional AlN/sapphire template by Molecular Beam Epitaxy. The peak emission wavelength is observed at 260 nm. 
    more » « less