skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proton-Alpha Drift Instability of Electromagnetic Ion-Cyclotron Modes: Quasilinear Development
The ability of space plasmas to self-regulate through mechanisms involving self-generated fluctuations is a topic of high interest. This paper presents the results of a new advanced quasilinear (QL) approach for the instability of electromagnetic ion-cyclotron modes driven by the relative alpha-proton drift observed in solar wind. For an extended parametric analysis, the present QL approach includes also the effects of intrinsic anisotropic temperatures of these populations. The enhanced fluctuations contribute to an exchange of energy between proton and alpha particles, leading to important variations of the anisotropies, the proton-alpha drift and the temperature contrast. The results presented here can help understand the observational data, in particular, those revealing the local variations associated with the properties of protons and alpha particles as well as the spatial profiles in the expanding solar wind.  more » « less
Award ID(s):
1842643
PAR ID:
10325729
Author(s) / Creator(s):
Date Published:
Journal Name:
Physics
Volume:
3
ISSN:
2624-8174
Page Range / eLocation ID:
1175–1189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.In situ observations by the Parker Solar Probe (PSP) have revealed new properties of the proton velocity distributions (VDs), including hammerhead features that suggest a non-isotropic broadening of the beams. Aims.The present work proposes a very plausible explanation for the formation of hammerhead proton populations through the action of a proton firehose-like instability triggered by the proton beam. Methods.We investigated a self-generated firehose-like instability driven by the relative drift of ion populations using a simplified moment-based quasi-linear (QL) theory. While simpler and faster than advanced numerical simulations, this toy model provided rapid insights and concisely highlighted the role of plasma micro-instabilities in relaxing the observed anisotropies of particle VDs in the solar wind and space plasmas. Results.The QL theory proposed here shows that the resulting transverse waves are right-hand polarized and have two consequences on the protons: (i) They reduce the relative drift between the beam and the core, but above all, (ii) they induce a strong perpendicular temperature anisotropy specific to the observed hammerhead ion beam. Moreover, the long-run QL results suggest that these hammerhead distributions are rather transitory states that are still subject to relaxation mechanisms, in which instabilities such as the one discussed here are very likely involved. This foundational work motivates future detailed studies using advanced methods. 
    more » « less
  2. Abstract The proton–alpha drift instability is a possible mechanism of the alpha-particle deceleration and the resulting proton heating in the solar wind. We present hybrid numerical simulations of this instability with particle-in-cell ions and a quasi-neutralizing electron fluid for typical conditions at 1 au. For the parameters used in this paper, we find that fast magnetosonic unstable modes propagate only in the direction opposite to the alpha-particle drift and do not produce the perpendicular proton heating necessary to accelerate the solar wind. Alfvén modes propagate in both directions and heat the protons perpendicularly to the mean magnetic field. Despite being driven by the alpha temperature anisotropy, the Alfvén instability also extracts the energy from the bulk motion of the alpha particles. In the solar wind, the instabilities operate in a turbulent ambient medium. We show that the turbulence suppresses the Alfvén instability but the perpendicular proton heating persists. Unlike a static nonuniform background, the turbulence does not invert the sense of the proton heating associated with the fast magnetosonic instability and it remains preferentially parallel. 
    more » « less
  3. Abstract The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics. 
    more » « less
  4. Abstract Observational data at heliocentric distances of tens of solar radii suggest that fast magnetosonic modes make up a considerable fraction of the solar wind fluctuations. Furthermore, this fraction appears to increase closer to the Sun. We carry out three-dimensional kinetic simulations with particle ions and fluid electrons to evaluate the proton and alpha-particle heating produced by the damping of the fast waves in the solar corona. Realistic parameters at 5 solar radii, including the fluctuation amplitude, are used. We show that, due to the cyclotron resonance, the alphas are heated preferentially perpendicularly to the magnetic field and much more strongly than the protons. The presence of the alpha particles alters the energy partition by reducing the heating of the protons. Nevertheless, the proton heating is sufficient to account for the solar wind acceleration. 
    more » « less
  5. Abstract Using in situ measurements from the Parker Solar Probe and Wind spacecraft, we investigate the small-scale magnetic flux ropes (SFRs) and their properties inside stream interaction regions (SIRs). Within SIRs from ∼0.15 to 1 au, SFRs are found to exist in a wide range of solar wind speeds with more frequent occurrences after the stream interface, and the Alfvénicity of these structures decreases significantly with increasing heliocentric distances. Furthermore, we examine the variation of five corresponding SIRs from the same solar sources. The enhancements of suprathermal electrons within these SIRs persist at 1 au and are observed multiple times. An SFR appears to occur repeatedly with the recurring SIRs and is traversed by the Wind spacecraft at least twice. This set of SFRs has similarities in variations of the magnetic field components, plasma bulk properties, density ratio of solar wind alpha and proton particles, and unidirectional suprathermal electrons. We also show, through the detailed time-series plots and Grad–Shafranov reconstruction results, that they possess the same chirality and carry comparable amounts of magnetic flux. Lastly, we discuss the possibility for these recurring SFRs to be formed via interchange reconnection, maintain the connection with the Sun, and survive up to 1 au. 
    more » « less