skip to main content

This content will become publicly available on December 1, 2022

Title: Proton-Alpha Drift Instability of Electromagnetic Ion-Cyclotron Modes: Quasilinear Development
The ability of space plasmas to self-regulate through mechanisms involving self-generated fluctuations is a topic of high interest. This paper presents the results of a new advanced quasilinear (QL) approach for the instability of electromagnetic ion-cyclotron modes driven by the relative alpha-proton drift observed in solar wind. For an extended parametric analysis, the present QL approach includes also the effects of intrinsic anisotropic temperatures of these populations. The enhanced fluctuations contribute to an exchange of energy between proton and alpha particles, leading to important variations of the anisotropies, the proton-alpha drift and the temperature contrast. The results presented here can help understand the observational data, in particular, those revealing the local variations associated with the properties of protons and alpha particles as well as the spatial profiles in the expanding solar wind.
Authors:
Award ID(s):
1842643
Publication Date:
NSF-PAR ID:
10325729
Journal Name:
Physics
Volume:
3
Page Range or eLocation-ID:
1175–1189
ISSN:
2624-8174
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The proton–alpha drift instability is a possible mechanism of the alpha-particle deceleration and the resulting proton heating in the solar wind. We present hybrid numerical simulations of this instability with particle-in-cell ions and a quasi-neutralizing electron fluid for typical conditions at 1 au. For the parameters used in this paper, we find that fast magnetosonic unstable modes propagate only in the direction opposite to the alpha-particle drift and do not produce the perpendicular proton heating necessary to accelerate the solar wind. Alfvén modes propagate in both directions and heat the protons perpendicularly to the mean magnetic field. Despite being driven by the alpha temperature anisotropy, the Alfvén instability also extracts the energy from the bulk motion of the alpha particles. In the solar wind, the instabilities operate in a turbulent ambient medium. We show that the turbulence suppresses the Alfvén instability but the perpendicular proton heating persists. Unlike a static nonuniform background, the turbulence does not invert the sense of the proton heating associated with the fast magnetosonic instability and it remains preferentially parallel.
  2. Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After themore »shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect.« less
  3. Abstract One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed switchbacks . These δ B R / B ∼  ( 1 ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma β and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leadingmore »edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust.« less
  4. ABSTRACT This paper formulates a velocity moment-based quasi-linear theory that combines the impacts of weakly unstable proton–cyclotron- (or, equivalently, electromagnetic ion cyclotron) and proton-mirror instabilities on the solar wind plasma initially characterized by an excessive perpendicular proton temperature anisotropy. The present formalism is an alternative to the existing model in that the weakly unstable modes are characterized by analytical formalism that involves the assumption of weak growth rate and/or fluid-theoretical dispersion relation, in place of numerical root-finding method based on the transcendental plasma dispersion function. This results in an efficient numerical platform for analyzing the quasi-linear development of the said instabilities. Such a formalism may be useful in the larger context of global solar wind modelling effort where an efficient calculation of self-consistent wave–particle interaction process is called for. A direct comparison with spacecraft observations of solar wind proton data distribution shows that the present weak growth rate formalism of quasi-linear calculation produces results that are consistent with the observation.
  5. Abstract We present analysis of 17,043 proton kinetic-scale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s −1 magnetic field resolution. The CSs have thickness, λ, from a few tens to one thousand kilometers with typical values around 100 km, or within about 0.1–10 λ p in terms of local proton inertial length, λ p . We found that the current density is larger for smaller-scale CSs, J 0 ≈ 6 nAm −2 · ( λ /100 km) −0.56 , but does not statistically exceed a critical value, J A , corresponding to the drift between ions and electrons of local Alvén speed. The observed trend holds in normalized units: J 0 / J A ≈ 0.17 · ( λ / λ p ) − 0.51 . The CSs are statistically force-free with magnetic shear angle correlated with CS spatial scale: Δ θ ≈ 19 ° · ( λ / λ p ) 0.5 . The observed correlations are consistent with local turbulence being the source of proton kinetic-scale CSs in the solar wind, while the mechanisms limiting the current density remain to be understood.