skip to main content


Title: Proton-Alpha Drift Instability of Electromagnetic Ion-Cyclotron Modes: Quasilinear Development
The ability of space plasmas to self-regulate through mechanisms involving self-generated fluctuations is a topic of high interest. This paper presents the results of a new advanced quasilinear (QL) approach for the instability of electromagnetic ion-cyclotron modes driven by the relative alpha-proton drift observed in solar wind. For an extended parametric analysis, the present QL approach includes also the effects of intrinsic anisotropic temperatures of these populations. The enhanced fluctuations contribute to an exchange of energy between proton and alpha particles, leading to important variations of the anisotropies, the proton-alpha drift and the temperature contrast. The results presented here can help understand the observational data, in particular, those revealing the local variations associated with the properties of protons and alpha particles as well as the spatial profiles in the expanding solar wind.  more » « less
Award ID(s):
1842643
NSF-PAR ID:
10325729
Author(s) / Creator(s):
Date Published:
Journal Name:
Physics
Volume:
3
ISSN:
2624-8174
Page Range / eLocation ID:
1175–1189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics.

     
    more » « less
  2. Abstract

    The proton–alpha drift instability is a possible mechanism of the alpha-particle deceleration and the resulting proton heating in the solar wind. We present hybrid numerical simulations of this instability with particle-in-cell ions and a quasi-neutralizing electron fluid for typical conditions at 1 au. For the parameters used in this paper, we find that fast magnetosonic unstable modes propagate only in the direction opposite to the alpha-particle drift and do not produce the perpendicular proton heating necessary to accelerate the solar wind. Alfvén modes propagate in both directions and heat the protons perpendicularly to the mean magnetic field. Despite being driven by the alpha temperature anisotropy, the Alfvén instability also extracts the energy from the bulk motion of the alpha particles. In the solar wind, the instabilities operate in a turbulent ambient medium. We show that the turbulence suppresses the Alfvén instability but the perpendicular proton heating persists. Unlike a static nonuniform background, the turbulence does not invert the sense of the proton heating associated with the fast magnetosonic instability and it remains preferentially parallel.

     
    more » « less
  3. Abstract Using in situ measurements from the Parker Solar Probe and Wind spacecraft, we investigate the small-scale magnetic flux ropes (SFRs) and their properties inside stream interaction regions (SIRs). Within SIRs from ∼0.15 to 1 au, SFRs are found to exist in a wide range of solar wind speeds with more frequent occurrences after the stream interface, and the Alfvénicity of these structures decreases significantly with increasing heliocentric distances. Furthermore, we examine the variation of five corresponding SIRs from the same solar sources. The enhancements of suprathermal electrons within these SIRs persist at 1 au and are observed multiple times. An SFR appears to occur repeatedly with the recurring SIRs and is traversed by the Wind spacecraft at least twice. This set of SFRs has similarities in variations of the magnetic field components, plasma bulk properties, density ratio of solar wind alpha and proton particles, and unidirectional suprathermal electrons. We also show, through the detailed time-series plots and Grad–Shafranov reconstruction results, that they possess the same chirality and carry comparable amounts of magnetic flux. Lastly, we discuss the possibility for these recurring SFRs to be formed via interchange reconnection, maintain the connection with the Sun, and survive up to 1 au. 
    more » « less
  4. Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect. 
    more » « less
  5. The current state of the art thermal particle measurements in the solar wind are insufficient to address many long standing, fundamental physical processes. The solar wind is a weakly collisional ionized gas experiencing collective effects due to long-range electromagnetic forces. Unlike a collisionally mediated fluid like Earth’s atmosphere, the solar wind is not in thermodynamic or thermal equilibrium. For that reason, the solar wind exhibits multiple particle populations for each particle species. We can mostly resolve the three major electron populations (e.g., core, halo, strahl, and superhalo) in the solar wind. For the ions, we can sometimes separate the proton core from a secondary proton beam and heavier ion species like alpha-particles. However, as the solar wind becomes cold or hot, our ability to separate these becomes more difficult. Instrumental limitations have prevented us from properly resolving features within each ion population. This destroys our ability to properly examine energy budgets across transient, discontinuous phenomena (e.g., shock waves) and the evolution of the velocity distribution functions. Herein we illustrate both the limitations of current instrumentation and why higher resolutions are necessary to properly address the fundamental kinetic physics of the solar wind. This is accomplished by directly comparing to some current solar wind observations with calculations of velocity moments to illustrate the inaccuracy and incompleteness of poor resolution data. 
    more » « less