The objective of this study is to validate reduced graphene oxide (RGO)-based volatile organic compounds (VOC) sensors, assembled by simple and low-cost manufacturing, for the detection of disease-related VOCs in human breath using machine learning (ML) algorithms. RGO films were functionalized by four different metalloporphryins to assemble cross-sensitive chemiresistive sensors with different sensing properties. This work demonstrated how different ML algorithms affect the discrimination capabilities of RGO–based VOC sensors. In addition, an ML-based disease classifier was derived to discriminate healthy vs. unhealthy individuals based on breath sample data. The results show that our ML models could predict the presence of disease-related VOC compounds of interest with a minimum accuracy and F1-score of 91.7% and 83.3%, respectively, and discriminate chronic kidney disease breath with a high accuracy, 91.7%.
more »
« less
Pilot Study on Exhaled Breath Analysis for a Healthy Adult Population in Hawaii
Fast diagnostic results using breath analysis are an anticipated possibility for disease diagnosis or general health screenings. Tests that do not require sending specimens to medical laboratories possess capabilities to speed patient diagnosis and protect both patient and healthcare staff from unnecessary prolonged exposure. The objective of this work was to develop testing procedures on an initial healthy subject cohort in Hawaii to act as a range-finding pilot study for characterizing the baseline of exhaled breath prior to further research. Using comprehensive two-dimensional gas chromatography (GC×GC), this study analyzed exhaled breath from a healthy adult population in Hawaii to profile the range of different volatile organic compounds (VOCs) and survey Hawaii-specific differences. The most consistently reported compounds in the breath profile of individuals were acetic acid, dimethoxymethane, benzoic acid methyl ester, and n-hexane. In comparison to other breathprinting studies, the list of compounds discovered was representative of control cohorts. This must be considered when implementing proposed breath diagnostics in new locations with increased interpersonal variation due to diversity. Further studies on larger numbers of subjects over longer periods of time will provide additional foundational data on baseline breath VOC profiles of control populations for comparison to disease-positive cohorts.
more »
« less
- Award ID(s):
- 1752607
- PAR ID:
- 10325831
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 12
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 3726
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Harnessing the potential of exhaled breath analysis is an emerging frontier in medical diagnostics, given breath is a rich source of volatile organic compound (VOC) biomarkers for different medical conditions. A current downfall in this field, however, is the lack of standardized and widely available methods for offline sampling of exhaled VOCs. Herein, strides are taken toward the standardization of breath sampling in Tedlar bags by exploring several factors that can impact VOC heterogeneity, including tubing material, chemical composition of collection bags, breath fractionation, exhalation volume, and transfer flow rate. After bag-based sampling standardization, performance was benchmarked using two offline breath sampling methods, Tedlar bags and the Respiration Collector for In Vitro Analysis (ReCIVA). Three volunteers from the laboratory with no known respiratory diseases donated ≥ n = 5 samples collected onto adsorption tubes via each method, which were analyzed through thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC–MS). Data processing revealed a set of 15 highly reliable on-breath VOCs detected across volunteers, and most analytes (except indole) demonstrated higher sensitivity using Tedlar bags. Calculating relative standard deviation (RSD) values showed Tedlar bags were also significantly more reproducible compared to the ReCIVA (p < 0.03). Agreement between the two methods was demonstrated through correlating VOC signals with high statistical significance (R2 = 0.70), indicating both devices are well situated for biomarker discovery applications.more » « less
-
Abstract Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states.more » « less
-
ABSTRACT Patients with vocal cord polyps commonly present with symptoms of hoarseness. Although rare, large polyps can cause shortness of breath and stridor and should be included in the differential for patients with airway obstruction. Dysphonia or hoarseness can be a symptom of underlying disease, such as head and neck cancer. This case illustrates the importance of prompt and accurate diagnosis in a patient with persistent symptoms and a history of smoking. Obtaining a laryngoscopy is crucial to appropriately evaluate the larynx. Proper visualization of the laryngeal structures will help direct patient care toward further diagnostic imaging and medical or surgical intervention if indicated.more » « less
-
Recent respiratory outbreaks have garnered substantial attention, yet most respiratory monitoring remains confined to physical signals. Exhaled breath condensate (EBC) harbors rich molecular information that could unveil diverse insights into an individual’s health. Unfortunately, challenges related to sample collection and the lack of on-site analytical tools impede the widespread adoption of EBC analysis. Here, we introduce EBCare, a mask-based device for real-time in situ monitoring of EBC biomarkers. Using a tandem cooling strategy, automated microfluidics, highly selective electrochemical biosensors, and a wireless reading circuit, EBCare enables continuous multimodal monitoring of EBC analytes across real-life indoor and outdoor activities. We validated EBCare’s usability in assessing metabolic conditions and respiratory airway inflammation in healthy participants, patients with chronic obstructive pulmonary disease or asthma, and patients after COVID-19 infection.more » « less
An official website of the United States government

