skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physics-Informed Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries
State of health (SOH) estimation of lithium-ion batteries has typically been focused on estimating present cell capacity relative to initial cell capacity. While many successes have been achieved in this area, it is generally more advantageous to not only estimate cell capacity, but also the underlying degradation modes which cause capacity fade because these modes give further insight into maximizing cell usage. There have been some successes in estimating cell degradation modes, however, these methods either require long-term degradation data, are demonstrated solely on artificially constructed cells, or exhibit high error in estimating late-life degradation. To address these shortfalls and alleviate the need for long-term cycling data, we propose a method for estimating the capacity of a battery cell and diagnosing its primary degradation mechanisms using limited early-life degradation data. The proposed method uses simulation data from a physics-based half-cell model and early-life degradation data from 16 cells cycled under two temperatures and C rates to train a machine learning model. Results obtained from a four-fold cross validation study indicate that the proposed physics-informed machine learning method trained with only 60 early life data (five data from each of the 12 training cells) and 30 high-degradation simulated data can decrease estimation error by up to a total of 9.77 root mean square error % when compared to models which were trained only on the early-life experimental data.  more » « less
Award ID(s):
2015710 1611333
PAR ID:
10325841
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
47th Design Automation Conference (DAC)
Volume:
3A
Page Range / eLocation ID:
V03AT03A041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, Dong (Ed.)
    Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions. 
    more » « less
  2. Differential voltage analysis (DVA) is a conventional approach for estimating capacity degradation in batteries. During charging, a graphite electrode goes through several phase transitions observed as plateaus in the voltage response. The transitions between these plateaus emerge as observable peaks in the differential voltage. The DVA method utilizes these peaks for estimating cell degradation. Unfortunately, at higher C-rates (above C/2) the peaks flatten and become unobservable. In this work, we show that, unlike the differential voltage, the peaks in the 2nd derivative of the expansion with respect to capacity remain observable up to 1C and thus make possible diagnostic algorithms at these charging rates. To understand why that is the case, we have developed an electrochemical and expansion model suitable for model-based estimation. In particular, we demonstrate that the single particle modeling methodology is not able to capture the peak smoothing effect, therefore a multi-particle approach for the graphite electrode is needed. Additionally, model parameters are identified using experimental data from a graphite/NMC pouch cell. The proposed model produces an excellent fit for the observed electric and mechanical swelling response of the cells and could enable physics-based data-driven degradation studies at practical charging rates. 
    more » « less
  3. Abstract Monitoring the health condition as well as predicting the performance of Lithium-ion batteries are crucial to the reliability and safety of electrical systems such as electric vehicles. However, estimating the discharge capacity and end-of-discharge (EOD) of a battery in real-time remains a challenge. Few works have been reported on the relationship between the capacity degradation of a battery and EOD. We introduce a new data-driven method that combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) models to predict the discharge capacity and the EOD using online condition monitoring data. The CNN model extracts long-term correlations among voltage, current, and temperature measurements and then estimates the discharge capacity. The BiLSTM model extracts short-term dependencies in condition monitoring data and predicts the EOD for each discharge cycle while utilizing the capacity predicted by CNN as an additional input. By considering the discharge capacity, the BiLSTM model is able to use the long-term health condition of a battery to improve the prediction accuracy of its short-term performance. We demonstrated that the proposed method can achieve online discharge capacity estimation and EOD prediction efficiently and accurately. 
    more » « less
  4. Uwe Sauer, Dirk (Ed.)
    ABSTRACT State of Charge (SoC) and discharge capacity of the batteries are parameters that cannot be determined directly from the battery monitoring and control system and requires estimation. Current and voltage sensors have inherent error and delay leading to inaccurate measurements leading to inaccurate SoC and discharge capacity estimations. These sensors also have an additional cost to the battery system. This paper proposes a sensorless approach to estimate parameters of Vanadium Redox Flow Batteries (VRFBs) for both CC and CV charging methods by estimating battery current in CV mode and terminal voltage in CC mode. The results of estimations by the sensorless approach show a maximum relative error of 0.0035 in estimating terminal voltage in CC charging and a maximum relative error of 0.045 in estimating charging current in CV mode. Furthermore, long- term operation of vanadium redox flow batteries causes ion diffusions across the membrane and the depletion of active materials, which leads to capacity fading in VRFBs and inaccurate SoC estimation. To address the inaccuracy of SoC estimation in the long-term use of the battery, the capacity fading model is also considered for VRFBs in this paper. Experimental results show a 19% electrolyte volume change in the positive and negative tanks after 200 cycles of charge/discharge due to the bulk electrolyte transfer between the positive and negative sides of the battery system. This change of electrolyte volume results in 13.73% capacity fading after 200 cycles of charging/discharging. The SoC also changes by 7.1% after 200 cycles, due to the capacity and electrolyte volume loss, which shows the necessity of considering capacity fading in long-term use of the battery. 
    more » « less
  5. Solid oxide cell long-term durability experiments are resource-intensive and have limited ability to capture the interdependence of microstructural evolution and electrochemical performance. Studies of microstructural degradation mechanisms are usually limited to before and after life-test images. Here we describe a life testing method that simultaneously operates multiple symmetric cells under different conditions, simultaneously providing information on electrolysis and fuel cell operation, while sampling the microstructure during operation. The method utilizes laser-cutting to exactly define different cell areas, allowing testing under different current densities with a single current source, and facilitating removal of segments of the cellsduringlife tests, allowing for microstructural evaluation at intermediate times. The method is demonstrated in Ni-YSZ / YSZ / Ni-YSZ fuel-electrode-supported cells at low H2O/H2ratios. Characterization using SEM-based imaging techniques shows pronounced microstructural damage that increases rapidly with increasing current density and time, mirroring observed electrochemical degradation. The present results agree with prior reports for SOC operation under such conditions but reveal new features of the degradation process via the unique capability of time-resolved imaging. 
    more » « less