抄録 It is important to understand the long-term migration of radionuclides when considering long-lasting rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides pathways for fluid flow. The geometry of such a network can change due to fracture sealing by fine-grained material over extended periods of time. Groundwater commonly contains fine-grained material such as clay minerals, and it is probable that such minerals accumulate within rock fractures during groundwater flow, thereby decreasing fracture apertures and bulk permeability. It is therefore essential to conduct permeability measurements using water that includes fine-grained minerals in order to understand the evolving permeability characteristics of rock. However, this has not been studied to date in in-situ rock mass. Therefore, in the present study, we perform permeability measurements in a granite rock mass to investigate the change of permeability that occurs under the flow of water that includes clays. Our findings show that clay particles accumulate in fractures and that the permeability (hydraulic conductivity) of the granite rock mass decreases over time. The decrease was more significant in the earlier time. We conclude that the accumulation of clay minerals in the fracture decreases the permeability of a rock mass. Furthermore, we consider that the filling and closure of fractures in rock is possible under the flow of groundwater that contains clay minerals.
more »
« less
Radar imaging of fractures and voids behind the walls of an underground mine
Two- and three-dimensional rock-penetrating-radar data were acquired on the wall of a pillar in an underground limestone mine. The objective was to test the ability of radar to image fractures and karst voids and to characterize their geometry, aperture, and fluid content, with the goal of mitigating mining hazards. Strong radar reflections in the field data correlate with fractures and a cave exposed on the pillar walls. Large pillar wall topography was included in the steep-dip Kirchhoff migration algorithm because standard elevation corrections are inaccurate. The depth-migrated 250 MHz radar images illuminate fractures, karst voids, and the far wall of the pillar up to approximately 25 m depth into the rock, with a spatial resolution of <0.5 m. Higher frequency radar improved the image resolution and aided in the interpretation, but at the cost of shallower depth of penetration and extra acquisition effort. Due to the strong contrast in physical properties between the rock and the fracture fluid, fractures with apertures as thin as a 50th of a radar wavelength were imaged. Water-filled fractures with mm-scale aperture and air-filled fractures with cm-scale apertures produce strong reflections at 250 MHz. A strong variation in the reflection amplitude along each fracture is interpreted to represent the variable fracture aperture and the nonplanar fracture structure. Fracture apertures were quantitatively measured, but distinguishing water from air-filled fractures was not possible due to the complex radar wavelet and fracture geometry. Two conjugate fracture sets were imaged. One of these fracture sets dominates the rock mass stability and water inrush challenges throughout the mine. All of the detected voids and a large cave are at the intersection of two fractures, indicating preferential water flow and dissolution along conjugate fracture intersections. Detecting, locating, and characterizing fractures and voids prior to excavation can enable miners to mitigate potential collapse and flood hazards before they occur.
more »
« less
- Award ID(s):
- 1822108
- PAR ID:
- 10325910
- Date Published:
- Journal Name:
- GEOPHYSICS
- Volume:
- 86
- Issue:
- 4
- ISSN:
- 0016-8033
- Page Range / eLocation ID:
- H27 to H41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. The continuum of behavior that emerges during fracturenetwork development in crystalline rock may be categorized into threeend-member modes: fracture nucleation, isolated fracture propagation, andfracture coalescence. These different modes of fracture growth producefracture networks with distinctive geometric attributes, such as clusteringand connectivity, that exert important controls on permeability and theextent of fluid–rock interactions. To track how these modes of fracturedevelopment vary in dominance throughout loading toward failure and thushow the geometric attributes of fracture networks may vary under theseconditions, we perform in situ X-ray tomography triaxial compressionexperiments on low-porosity crystalline rock (monzonite) under upper-crustalstress conditions. To examine the influence of pore fluid on the varyingdominance of the three modes of growth, we perform two experiments undernominally dry conditions and one under water-saturated conditions with 5 MPa ofpore fluid pressure. We impose a confining pressure of 20–35 MPa and thenincrease the differential stress in steps until the rock failsmacroscopically. After each stress step of 1–5 MPa we acquire athree-dimensional (3D) X-ray adsorption coefficient field from which weextract the 3D fracture network. We develop a novel method of trackingindividual fractures between subsequent tomographic scans that identifieswhether fractures grow from the coalescence and linkage of several fracturesor from the propagation of a single fracture. Throughout loading in all ofthe experiments, the volume of preexisting fractures is larger than that ofnucleating fractures, indicating that the growth of preexisting fracturesdominates the nucleation of new fractures. Throughout loading until close tomacroscopic failure in all of the experiments, the volume of coalescingfractures is smaller than the volume of propagating fractures, indicatingthat fracture propagation dominates coalescence. Immediately precedingfailure, however, the volume of coalescing fractures is at least double thevolume of propagating fractures in the experiments performed at nominallydry conditions. In the water-saturated sample, in contrast, although thevolume of coalescing fractures increases during the stage preceding failure,the volume of propagating fractures remains dominant. The influence ofstress corrosion cracking associated with hydration reactions at fracturetips and/or dilatant hardening may explain the observed difference infracture development under dry and water-saturated conditions.more » « less
-
Davidson, Cam; Wirth, Karl (Ed.)Fault-tip damage zones develop in response to fault propagation and displacement and are caused by the local amplification of stresses at the fault tip. Understanding the geometry and intensity of damage zones is crucial for evaluating earthquake hazards and assessing the potentials of oil and gas production, geothermal energy, and groundwater resources. Fractures initiate as a result of stresses exceeding rock strength and propagate based on the stress field at the fault tip. We investigate the damage zone of a fault segment within the Sevier normal fault zone near Orderville, Utah, focusing on fractures that developed within the Jurassic Navajo Sandstone, the Temple Cap Formation, and the oldest beds of the Carmel Formation. Because normal faults grow laterally as slip and displacement increase, we focus on the tip zone of a fault segment where fracturing is well-exposed. We executed a series of unmanned aerial vehicle (UAV) flights to capture high-resolution imagery of inaccessible rock exposures. We use these images to construct structure-from-motion (SfM) virtual outcrop models (VOMs) that we georeference and analyze using Agisoft Metashape. We collected and analyzed fracture orientation and intensity data in the field and with VOMs. Both types of data reveal a distribution of fracture intensity that is consistent with inner and outer damage zones similar to previous studies of other fault systems. Adjacent to the tip, the inner damage zone has a higher fracture intensity on the hanging wall compared to the footwall. This high fracture intensity on the hanging wall ends 30 meters over from the fault core where the intensity of the outer damage zone of the hanging wall becomes similar to that within the inner damage zone of the footwall. Laterally, along strike of the fault tip, intense fracturing ends 60 meters to the south and all fracturing ends 350 meters from the fault tip. Our results have implications for the spatial distribution of fracturing and related permeability in similar normal fault systems.more » « less
-
null (Ed.)Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth’s surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this “corked” borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported.more » « less
-
Abstract Interferometric Synthetic Aperture Radar is an important tool for imaging surface deformation from large continental earthquakes. Here, we present maps of coseismic displacement and strain from the 2019 Ridgecrest earthquakes using multiple Sentinel-1 images. We provide three types of interferometric products. (1) Standard interferograms from two look directions provide an overview of the deformation and can be used for modeling coseismic slip. (2) Phase gradient maps from stacks of coseismic interferograms provide high-resolution (∼30 m) images of strain concentration and surface fracturing that can be used to guide field surveys. (3) High-pass filtered, stacked, unwrapped phase is decomposed into east–west and up–down, south–north components and is used to determine the sense of fault slip. The resulting phase gradient maps reveal over 300 surface fractures, including triggered slip on the Garlock fault. The east–west component of high-pass filtered phase reveals the polarity of the strike-slip offset (right lateral or left lateral) for many of the fractures. We find a small number of fractures that have slip polarity that is retrograde to the background tectonic stress. This is similar to observations of retrograde slip observed near the 1999 Mw 7.1 Hector Mine rupture, but the Ridgecrest observations are more completely imaged by the frequent and high-quality acquisitions from the twin Sentinel-1 spacecrafts. Determining whether the retrograde features are triggered slip on existing faults, or compliant fault deformation in response to stress changes from the Ridgecrest earthquakes, or new Coulomb-style failures, will require additional field work, modeling, and analysis.more » « less
An official website of the United States government

