skip to main content


Title: A Guide to Realistic Uncertainties on the Fundamental Properties of Solar-type Exoplanet Host Stars
Abstract Our understanding of the properties and demographics of exoplanets critically relies on our ability to determine the fundamental properties of their host stars. The advent of Gaia and large spectroscopic surveys has now made it possible, in principle, to infer the properties of individual stars, including most exoplanet hosts, to very high precision. However, we show that, in practice, such analyses are limited by uncertainties in both the fundamental scale and our models of stellar evolution, even for stars similar to the Sun. For example, we show that current uncertainties on measured interferometric angular diameters and bolometric fluxes set a systematic uncertainty floor of ≈2.4% in temperature, ≈2.0% in luminosity, and ≈4.2% in radius. Comparisons between widely available model grids suggest uncertainties of order ≈5% in mass and ≈20% in age for main-sequence and subgiant stars. While the radius uncertainties are roughly constant over this range of stars, the model-dependent uncertainties are a complex function of luminosity, temperature, and metallicity. We provide open-source software for approximating these uncertainties for individual targets and discuss strategies for reducing these uncertainties in the future.  more » « less
Award ID(s):
2034336 1636624 1717000
NSF-PAR ID:
10325927
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. With the advent of space-based asteroseismology, determining accurate properties of red-giant stars using their observed oscillations has become the focus of many investigations due to their implications in a variety of fields in astrophysics. Stellar models are fundamental in predicting quantities such as stellar age, and their reliability critically depends on the numerical implementation of the physics at play in this evolutionary phase. Aims. We introduce the Aarhus red giants challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes that aim to establish the minimum level of uncertainties in properties of red giants arising solely from numerical implementations. We present the first set of results focusing on stellar evolution tracks and structures in the red-giant-branch (RGB) phase. Methods. Using nine state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at a fixed radius along the red-giant branch for masses of 1.0  M ⊙ , 1.5  M ⊙ , 2.0  M ⊙ , and 2.5  M ⊙ , and compared the predicted stellar properties. Results. Once models have been calibrated on the main sequence, we find a residual spread in the predicted effective temperatures across all codes of ∼20 K at solar radius and ∼30–40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2–5% (increasing with stellar mass), which we attribute to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ∼0.1 mag in the optical V -band. We also compare the predicted [C/N] abundance ratio and find a spread of 0.1 dex or more for all considered masses. Conclusions. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and they call for further investigation on these matters in the context of using properties of red giants as benchmarks for astrophysical studies. 
    more » « less
  2. Abstract About 70%–80% of stars in our solar and Galactic neighborhood are M dwarfs. They span a range of low masses and temperatures relative to solar-type stars, facilitating molecule formation throughout their atmospheres. Standard stellar atmosphere models primarily designed for FGK stars face challenges when characterizing broadband molecular features in spectra of cool stars. Here, we introduce SPHINX —a new 1D self-consistent radiative–convective thermochemical equilibrium chemistry model grid of atmospheres and spectra for M dwarfs in low resolution ( R ∼ 250). We incorporate the latest precomputed absorption cross sections with pressure broadening for key molecules dominant in late-K, early/main-sequence-M stars. We then validate our grid models by determining fundamental properties ( T eff , log g , [M/H], radius, and C/O) for 10 benchmark M+G binary stars with known host metallicities and 10 M dwarfs with interferometrically measured angular diameters. Incorporating the Gaussian process inference tool Starfish , we account for correlated and systematic noise in low-resolution (spectral stitching of SpeX, SNIFS, and STIS) observations and derive robust estimates of fundamental M-dwarf atmospheric parameters. Additionally, we assess the influence of photospheric heterogeneity on inferred [M/H] and find that it could explain some deviations from observations. We also probe whether the adopted convective mixing length parameter influences inferred radii, effective temperature, and [M/H] and again find that may explain discrepancies between interferometric observations and model-derived parameters for cooler M dwarfs. Mainly, we show the unique strength in leveraging broadband molecular absorption features occurring in low-resolution M dwarf spectra and demonstrate the ability to improve constraints on fundamental properties of exoplanet hosts and brown-dwarf companions. 
    more » « less
  3. Context. Asymptotic giant branch (AGB) stars are cool luminous evolved stars that are well observable across the Galaxy and populating Gaia data. They have complex stellar surface dynamics, which amplifies the uncertainties on stellar parameters and distances. Aims. On the AGB star CL Lac, it has been shown that the convection-related variability accounts for a substantial part of the Gaia DR2 parallax error. We observed this star with the MIRC-X beam combiner installed at the CHARA interferometer to detect the presence of stellar surface inhomogeneities. Methods. We performed the reconstruction of aperture synthesis images from the interferometric observations at different wavelengths. Then, we used 3D radiative hydrodynamics (RHD) simulations of stellar convection with CO5BOLD and the post-processing radiative transfer code O PTIM 3D to compute intensity maps in the spectral channels of MIRC-X observations. Then, we determined the stellar radius using the average 3D intensity profile and, finally, compared the 3D synthetic maps to the reconstructed ones focusing on matching the intensity contrast, the morphology of stellar surface structures, and the photocentre position at two different spectral channels, 1.52 and 1.70 μ m, simultaneously. Results. We measured the apparent diameter of CL Lac at two wavelengths (3.299 ± 0.005 mas and 3.053 ± 0.006 mas at 1.52 and 1.70 μ m, respectively) and recovered the radius ( R = 307 ± 41 and R = 284 ± 38 R ⊙ ) using a Gaia parallax. In addition to this, the reconstructed images are characterised by the presence of a brighter area that largely affects the position of the photocentre. The comparison with 3D simulation shows good agreement with the observations both in terms of contrast and surface structure morphology, meaning that our model is adequate for explaining the observed inhomogenities. Conclusions. This work confirms the presence of convection-related surface structures on an AGB star of Gaia DR2. Our result will help us to take a step forward in exploiting Gaia measurement uncertainties to extract the fundamental properties of AGB stars using appropriate RHD simulations. 
    more » « less
  4. ABSTRACT The structure of the broad-line region (BLR) is an essential ingredient in the determination of active galactic nucleus (AGN) virial black hole masses, which in turn are important to study the role of black holes in galaxy evolution. Constraints on the BLR geometry and dynamics can be obtained from velocity-resolved studies using reverberation mapping data (i.e. monitoring data). However, monitoring data are observationally expensive and only available for a limited sample of AGNs, mostly confined to the local Universe. Here, we explore a new version of a Bayesian inference, physical model of the BLR that uses an individual spectrum and prior information on the BLR size from the radius–luminosity relation, to model the AGN BLR geometry and dynamics. We apply our model to a sample of 11 AGNs, which have been previously modelled using monitoring data. Our single-epoch BLR model is able to constrain some of the BLR parameters with inferred parameter values that agree within the uncertainties with those determined from the modelling of monitoring data. We find that our model is able to derive stronger constraints on the BLR for AGNs with broad emission lines that qualitatively have more substructure and more asymmetry, presumably as they contain more information to constrain the physical model. The performance of this model makes it a practical and cost-effective tool to determine some of the BLR properties of a large sample of low- and high-redshift AGNs, for which monitoring data are not available. 
    more » « less
  5. Context. HD 113337 is a main-sequence F6V field star more massive than the Sun. This star hosts one confirmed giant planet and possibly a second candidate, detected by radial velocities (RVs). The star also hosts a cold debris disc detected through the presence of an infrared excess, making it an interesting system to explore. Aims. We aim to bring new constraints on the star’s fundamental parameters, debris disc properties, and planetary companion(s) by combining complementary techniques. Methods. We used the VEGA interferometer on the CHARA array to measure the angular diameter of HD 113337. We derived its linear radius using the parallax from the Gaia Second Data Release. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. Then, we used Herschel images to partially resolve the outer debris disc and estimate its extension and inclination. Next, we acquired high-contrast images of HD 113337 with the LBTI to probe the ~10–80 au separation range. Finally, we combined the deduced contrast maps with previous RVs of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au. We took advantage of the constraints on the age and inclination brought by fundamental parameter analysis and disc imaging, respectively, for this analysis. Results. We derive a limb-darkened angular diameter of 0.386 ± 0.009 mas that converts into a linear radius of 1.50 ± 0.04 R ⊙ for HD 113337. The fundamental parameter analysis leads to an effective temperature of 6774 ± 125 K and to two possible age solutions: one young within 14–21 Myr and one old within 0.8–1.7 Gyr. We partially resolve the known outer debris disc and model its emission. Our best solution corresponds to a radius of 85 ± 20 au, an extension of 30 ± 20 au, and an inclination within 10–30° for the outer disc. The combination of imaging contrast limits, published RV, and age and inclination solutions allows us to derive a first possible estimation of the true masses of the planetary companions: ~7 −2 +4 M Jup for HD 113337 b (confirmed companion) and ~16 −3 +10 M Jup for HD 113337 c (candidate companion). We also constrain possible additional companions at larger separations. 
    more » « less