skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Coastal Road Flood Risk in Arctic Alaska, a Case Study from Hooper Bay
Rising waters and land subsidence are increasing relative sea levels in western and northern Alaska, forcing communities to relocate or armor in place. To appropriately plan and make equitable decisions, there is a need to forecast the risk of flood exposure in coastal Alaskan communities and to evaluate methods to mitigate that risk. This paper conducts use-inspired science to evaluate the current and future flood exposure of roads in Hooper Bay, Alaska, proposes a unit cost of flood exposure to estimate the cost of flooding, and compares various mitigation efforts including elevating roads and building dikes. Nine historic storms and their associated flood depths were subject to return-period analysis and modeled for several sea level rise scenarios. Based on the simulated road flood exposure (km hours/storm), and the storm-return period, an annual flood exposure (km hours/year) was computed. Then, the unit cost of flood exposure (USD/km hours) was determined as the ratio of the cost of flood mitigation (USD/year) to the annual flood exposure mitigated by the project. The analysis found that the unit cost of flood exposure, in conjunction with flood exposure calculations, does provide an approximate flood risk calculation, though a unitized cost of flood exposure needs to be divided into lump sum costs and materials costs. The analysis also found that dikes may be a more cost-effective alternative than road elevation. The flood risk calculation, based on the unit cost of flood exposure, could be made for all of the communities in a given region to identify those communities that face a high flood risk. Furthermore, if one divides the unit cost of flood exposure by the population, one obtains a cost/benefit ratio that potentially could be used to prioritize flood mitigation work.  more » « less
Award ID(s):
1745508 1927785
PAR ID:
10325992
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Marine Science and Engineering
Volume:
10
Issue:
3
ISSN:
2077-1312
Page Range / eLocation ID:
406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rising sea levels have increased flood risk in coastal communities on both the east and west coasts of the USA. The goal of this analysis is to approximate flood defense costs from cyclonic flooding as a partial means to evaluate the resilience of coastal communities. Storm surge models were previously constructed via an established approach to represent historical and future coastal Louisiana landscapes and associated flood patterns. Coastal flooding was also previously simulated via a suite of 14 hurricanes. Approximate levee heights surrounding Lafitte, Louisiana, are calculated from the surge and wave output of Hurricane Isaac, the predominated hurricane in the Lafitte area for all years examined (NAVD88, m): 1.68 (1930), 2.92 (1970), 3.30 (1990), 4.82 (2010), 5.93 (2030), 6.57 (2050), 7.16 (2070), 7.70 (2090), and 8.22 (2110). Approximate costs per person are also calculated (2010 USD): $49,500 (1930), $41,400 (1970), $37,500 (1990), $181,600 (2010), $223,600 (2030), $247,800 (2050), $269,900 (2070), $290,100 (2090), and $309,800 (2110). The Gulf of Mexico (GOM) migrated 7.4 km inland within the Louisiana Barataria coastal basin between 1973 and 2010. For each person in Lafitte, flood defense costs increased approximately (2010 USD) $19,000 per person per kilometer inland migration of the GOM from 1973 to 2010. The methodology developed in this case study effectively connects wetland loss with increased flood defense costs and can be applied to communities with similar challenges. 
    more » « less
  2. null (Ed.)
    As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure. 
    more » « less
  3. Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1 % floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km² (low), 160 km² (medium), or 300 km² (high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km² (low), 240 km² (medium), or 370 km² (high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from earthquake-cycle and climate-driven sea-level rise, and provide critical insights for tectonically active coastlines globally. 
    more » « less
  4. Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1% floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km2(low), 160 km2(medium), or 300 km2(high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km2(low), 240 km2(medium), or 370 km2(high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision-makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from the earthquake cycle and climate-driven sea-level rise and provide critical insights for tectonically active coastlines globally. 
    more » « less
  5. Abstract Globally, coastal communities experience flood hazards that are projected to worsen from climate change and sea level rise. The 100-year floodplain or record flood are commonly used to identify risk areas for planning purposes. Remote communities often lack measured flood elevations and require innovative approaches to estimate flood elevations. This study employs observation-based methods to estimate the record flood elevation in Alaska communities and compares results to elevation models, infrastructure locations, and sea level rise projections. In 46 analyzed communities, 22% of structures are located within the record floodplain. With sea level rise projections, this estimate increases to 30–37% of structures by 2100 if structures remain in the same location. Flood exposure is highest in western Alaska. Sea level rise projections suggest northern Alaska will see similar flood exposure levels by 2100 as currently experienced in western Alaska. This evaluation of record flood height, category, and history can be incorporated into hazard planning documents, providing more context for coastal flood exposure than previously existed for Alaska. This basic flood exposure method is transferable to other areas with similar mapping challenges. Identifying current and projected hazardous zones is essential to avoid unintentional development in floodplains and improve long-term safety. 
    more » « less