skip to main content


Title: When floods hit the road: Resilience to flood-related traffic disruption in the San Francisco Bay Area and beyond
As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.  more » « less
Award ID(s):
1739027
NSF-PAR ID:
10220013
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
32
ISSN:
2375-2548
Page Range / eLocation ID:
eaba2423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The research on coastal hazards predicts substantial adverse impacts of chronic and episodic flooding on populated coastal areas. Despite the growing evidence about anticipated flood risks, many coastal communities are still not adapting. The observed disconnect between science on physical impacts and adaptation decisionmaking in part reflects stakeholders’ inability to envision the implications of these impacts on socioeconomic systems and the built environment in their jurisdictions. This inertia is particularly apparent in the discourse on flood-driven displacement and relocation. There is a lack of knowledge about direct and indirect flood impacts on community attributes and services that contribute to relocation decision-making. This study holistically evaluates the flood exposure on municipal features vital for socioeconomic stability, livelihoods, and quality of life across spatiotemporal scales. As such, it uses a more nuanced approach to relocation risk assessment than those solely focused on direct inundation impacts. It measures flood exposure of land use, land cover, and sociocultural and economic dimensions that are important drivers of relocation in selected rural and urban areas. The approach uses a 50-year floodplain to delineate populated coastal locations exposed to 2% Annual Exceedance Probability (AEP) storm surge projections adjusted for 2030, 2060, and 2090 sea level rise (SLR) scenarios. It then evaluates the potential impacts of this flood exposure on different types of land uses and critical socioeconomic assets in rural (Dorchester and Talbot Counties, Maryland, USA) and urban (Cities of Hampton, Norfolk, Portsmouth, and Virginia Beach, Virginia, USA) settings. The results show that some urban land uses, such as open space, military and mixed-use, and rural residential and commercial areas, might experience significantly more flooding. There are also notable differences in the baseline flood exposure and the anticipated rate and acceleration in the future among selected communities with significant implications for relocation planning. 
    more » « less
  2. Abstract

    Exposure to sea-level rise (SLR) and flooding will make some areas uninhabitable, and the increased demand for housing in safer areas may cause displacement through economic pressures. Anticipating such direct and indirect impacts of SLR is important for equitable adaptation policies. Here we build upon recent advances in flood exposure modeling and social vulnerability assessment to demonstrate a framework for estimating the direct and indirect impacts of SLR on mobility. Using two spatially distributed indicators of vulnerability and exposure, four specific modes of climate mobility are characterized: (1) minimally exposed to SLR (Stable), (2) directly exposed to SLR with capacity to relocate (Migrating), (3) indirectly exposed to SLR through economic pressures (Displaced), and (4) directly exposed to SLR without capacity to relocate (Trapped). We explore these dynamics within Miami-Dade County, USA, a metropolitan region with substantial social inequality and SLR exposure. Social vulnerability is estimated by cluster analysis using 13 social indicators at the census tract scale. Exposure is estimated under increasing SLR using a 1.5 m resolution compound flood hazard model accounting for inundation from high tides and rising groundwater and flooding from extreme precipitation and storm surge. Social vulnerability and exposure are intersected at the scale of residential buildings where exposed population is estimated by dasymetric methods. Under 1 m SLR, 56% of residents in areas of low flood hazard may experience displacement, whereas 26% of the population risks being trapped (19%) in or migrating (7%) from areas of high flood hazard, and concerns of depopulation and fiscal stress increase within at least 9 municipalities where 50% or more of their total population is exposed to flooding. As SLR increases from 1 to 2 m, the dominant flood driver shifts from precipitation to inundation, with population exposed to inundation rising from 2.8% to 54.7%. Understanding shifting geographies of flood risks and the potential for different modes of climate mobility can enable adaptation planning across household-to-regional scales.

     
    more » « less
  3. Coastal communities are increasingly exposed to more intense and frequent hurricanes, accelerated sea-level rise, and prolonged tidal inundation, yet they are often a preferred retirement destination for older adults vulnerable to flooding and extreme weather events. The unique physical and psychosocial challenges of older population age 65 and over may affect their level of preparedness, capacity to cope with, and ability to respond and recover from a hazard event. Despite the clear vulnerabilities of older residents living in high-risk areas when compared to younger coastal populations, there is a lack of empirical research on the integrated flood risks to this population group in the coastal context. This paper provides a holistic assessment of this emerging problem along the U.S. East Coast by measuring the exposure of older population to sea level rise and storm surge in coastal counties. It further evaluates how age-related vulnerabilities differ between rural and urban settings using the case study approach and geospatial and statistical analysis the paper also conducts a review of scientific literature to identify gaps in the current understanding of health and well-being risks to aging populations in coastal communities. The results show that older populations are unevenly distributed along the U.S. East Coast with some states and counties having significantly higher percent of residents age 65 and older living along the shoreline. Many places with larger older populations have other attributes that further shape the vulnerability of this age group such as older housing stock, disabilities, and lower income and that often differ between rural and urban settings. Lastly, our study found that vast majority of research on aging in high-risk coastal locations has been conducted in relation to major disasters and almost none on the recurrent nuisance flooding that is already affecting many coastal communities. 
    more » « less
  4. Maritime transportation is crucial to national economic development as it offers a low-cost, safe, and efficient alternative for movement of freight compared to its land or air counterparts. River and channel dredging protocols are often adopted in many ports and harbors of the world to meet the increasing demand for freight and ensure safe passage of larger vessels. However, such protocols may have unintended adverse consequences on flood risks and functioning of coastal ecosystems and thereby compromising the valuable services they provide to society and the environment. This study analyzes the compound effects of dredging protocols under a range of terrestrial and coastal flood drivers, including the effects of sea level rise (SLR) on compound flood risk, vessel navigability, and coastal wetland inundation dynamics in Mobile Bay (MB), Alabama. We develop a set of hydrodynamic simulation scenarios for a range of river flow and coastal water level regimes, SLR projections, and dredging protocols designed by the U.S. Army Corps of Engineers. We show that channel dredging helps increase bottom (‘underkeel’) clearances by a factor of 3.33 under current mean sea level and from 4.20 to 4.60 under SLR projections. We find that both low and high water surface elevations (WSEs) could be detrimental, with low WSE (< -1.22 m) hindering safe navigation whereas high WSE (> 0.87 m) triggering minor to major flooding in the surrounding urban and wetland areas. Likewise, we identify complex inundation patterns emerging from nonlinear interactions of SLR, flood drivers, and dredging protocols, and additionally estimate probability density functions (PDFs) of wetland inundation. We show that changes in mean sea level due to SLR diminish any effects of channel dredging on wetland inundation dynamics and shift the PDFs beyond pre-established thresholds for moderate and major flooding. In light of our results, we recommend the need for integrated analyses that account for compound effects on vessel navigation and wetland inundation, and provide insights into environmental-friendly solutions for increasing cargo transportation. 
    more » « less
  5. Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting. 
    more » « less