skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning
Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology, Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.  more » « less
Award ID(s):
1925755 1925552 1556666
PAR ID:
10326070
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PhytoKeys
Volume:
187
ISSN:
1314-2011
Page Range / eLocation ID:
93 to 128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The fossil record of Marsilea is challenging to assess, due in part to unreliable reports and conflicting opinions regarding the proper application of the names Marsilea and Marsileaceaephyllum to fossil leaves and leaflets similar to those of modern Marsilea . Specimens examined for this study include material assigned to Marsileaceaephyllum johnhallii , purportedly the oldest fossil record of a Marsilea -like sporophyte from the Lower Cretaceous of the Dakota Formation, Kansas, U.S.A.; leaves and leaf whorls of the extinct aquatic angiosperm Fortuna from several Late Cretaceous and Paleocene localities in western North America; and leaves and leaflets resembling Marsilea from the Eocene Green River Formation, Colorado and Utah, U.S.A. Literature on the fossil record of Marsilea was also reviewed. As a result, several taxonomic changes are proposed. Marsileaceaephyllum johnhallii is reinterpreted as an aquatic angiosperm that shares some architectural features with the genus Fortuna , although Marsileaceaephyllum is here maintained as a distinct genus with an emended diagnosis; under this reinterpretation, the name Marsileaceaephyllum can no longer be applied to sporophyte organs with affinities to Marsileaceae. Three valid fossil Marsilea species are recognized on the basis of sporophyte material that includes characteristic quadrifoliolate leaves and reticulate-veined leaflets: Marsilea campanica (J. Kvaček & Herman) Hermsen, comb. nov., from the Upper Cretaceous Grünbach Formation, Austria; Marsilea mascogos Estrada-Ruiz et al., from the Upper Cretaceous Olmos Formation, Mexico; and Marsilea sprungerorum Hermsen, sp. nov., from the Eocene Green River Formation, U.S.A. The species are distinguished from one another based on leaflet dimensions. Leaves from the Eocene Wasatch Formation, U.S.A., are transferred from Marsileaceaephyllum back to Marsilea , although not assigned to a fossil species. Finally, an occurrence of Marsilea from the Oligocene of Ethiopia is reassigned to Salvinia . A critical evaluation of the fossil record of Marsilea thus indicates that (1) the oldest fossil marsileaceous sporophytes bearing Marsilea -like leaves are from the Campanian; (2) only four credible records of sporophyte material attributable to Marsilea are known; and (3) the oldest dispersed Marsilea spores are known from the Oligocene. 
    more » « less
  2. The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more. We report the first paleobotanical survey of Brunei Darussalam, a sultanate on the north coast of Borneo that still preserves the majority of its extraordinarily diverse, old-growth tropical rainforests. We discovered abundant compression floras dominated by angiosperm leaves at two sites of probable Pliocene age: Berakas Beach, in the Liang Formation, and Kampong Lugu, in an undescribed stratigraphic unit. Both sites also yielded rich palynofloral assemblages from the macrofossil-bearing beds, indicating lowland fern-dominated swamp (Berakas Beach) and mangrove swamp (Kampong Lugu) depositional environments. Fern spores from at least nine families dominate both palynological assemblages, along with abundant fungal and freshwater algal remains, rare marine microplankton, at least four mangrove genera, and a diverse rainforest tree and liana contribution (at least 19 families) with scarce pollen of Dipterocarpaceae, today’s dominant regional life form. Compressed leaves and rare reproductive material represent influx to the depocenters from the adjacent coastal rainforests. Although only about 40% of specimens preserve informative details, we can distinguish 23 leaf and two reproductive morphotypes among the two sites. Dipterocarps are by far the most abundant group in both compression assemblages, providing rare, localized evidence for dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene. The dipterocarp fossils include winged Shorea fruits, at least two species of plicate Dipterocarpus leaves, and very common Dryobalanops leaves. We attribute additional leaf taxa to Rhamnaceae ( Ziziphus ), Melastomataceae, and Araceae ( Rhaphidophora ), all rare or new fossil records for the region. The dipterocarp leaf dominance contrasts sharply with the family’s <1% representation in the palynofloras from the same strata. This result directly demonstrates that dipterocarp pollen is prone to strong taphonomic filtering and underscores the importance of macrofossils for quantifying the timing of the dipterocarps’ rise to dominance in the region. Our work shows that complex coastal rainforests dominated by dipterocarps, adjacent to swamps and mangroves and otherwise similar to modern ecosystems, have existed in Borneo for at least 4–5 million years. Our findings add historical impetus for the conservation of these gravely imperiled and extremely biodiverse ecosystems. 
    more » « less
  3. The most common macrofossils in the highly diverse flora from Laguna del Hunco (early Eocene of Chubut, Argentina) are “Celtis” ameghinoi leaves, whose true affinities have remained enigmatic for a century. The species accounts for 14% of all plant fossils in unbiased field counts and bears diverse insect-feeding damage, suggesting high biomass and paleoecological importance. The leaves have well-preserved architecture but lack cuticles or reproductive attachments. We find that the fossils only superficially resemble Celtis and comparable taxa in Cannabaceae, Ulmaceae, Rhamnaceae, Malvaceae, and many other families. However, the distinctive foliar morphology conforms in detail to Dobinea (Anacardiaceae), a genus with two species of shrubs and large herbs ranging from India’s Far East and Tibet to Myanmar and central China, and we propose Dobineaites ameghinoi (E.W. Berry) gen et. comb. nov. for the fossils. This discovery strengthens the extensive biogeographic links between Eocene Patagonia and mainland Asia, provides the first fossil record related to Dobinea, and represents a rare Gondwanan macrofossil occurrence of Anacardiaceae, which was widespread and diversified in the Northern Hemisphere at the time. The diverse leaf architecture of Anacardiaceae includes several patterns usually associated with other taxa, and many other leaf fossils in this family may remain misidentified. 
    more » « less
  4. Paleobotanical records provide opportunity to deepen an understanding of plant community ecology by reconstructing the outcome of large-scale ecological ‘experiments’ in Earth’s past. However, limited ability to describe ancient communities via plant functional traits and ecological strategies, rather than (para)taxonomic composition, can hinder the relevance of constructed datasets. Many functional traits are not measurable on fossil leaves and the link between leaf morphology and ecological strategy are currently unresolved. To help fill this gap, we analyze leaf traits applicable to fossil leaves (i.e., morphology, vein density, leaf mass per area) sampled at the community-scale from modern plots spanning successional gradients, where plant function and ecological strategies are expected to vary, in three different forest types: temperate deciduous forest (North Carolina, USA), tropical rainforest (Malaysian Borneo), and a tropical dry forest (Minas Gerais, Brazil). Preliminary results will be presented to draw empirical links between morphological leaf traits and ecological strategy. 
    more » « less
  5. More than 20,000 siderite concretions from the Mazon Creek area of northern Illinois, United States are housed in the paleobotanical collections of the Field Museum. A large proportion contain fossil plants of Middle Pennsylvanian age that often have excellent three-dimensional morphology and sometimes anatomical detail. Approximately eighty plant taxa have been recognized from the Mazon Creek Lagerstätte, but few have been studied in detail, and in some cases the systematic affinities of these fossils need reevaluation. The three-dimensional (3D) preservation of Mazon Creek fossil plants makes them ideal candidates for study using x-ray micro-computed tomography (μCT), and here we apply these techniques to more accurately reconstruct the morphology of specimens of Tetraphyllostrobus Gao et Zodrow and Crossotheca Zeiller. The mineralogical composition of the fossil plant preservation was studied using elemental maps and Raman spectroscopy. In-situ spores were studied with differential interference contrast, Airyscan confocal super-resolution microscopy, and scanning electron microscopy, which reveal different features of the spores with different degrees of clarity. Our analyses show that μCT can provide excellent detail on the three-dimensional structure of Mazon Creek plant fossils, with the nature of associated mineralization sometimes enhancing and sometimes obscuring critical information. Results provide guidance for selecting and prioritizing fossil plant specimens preserved in siderite concretions for future research. 
    more » « less