skip to main content


Title: Promotion of TH 3 (T = Si and Ge) group transfer within a tetrel bond by a cation–π interaction
The possibility of the transfer of the TH 3 group across a tetrel bond is considered by ab initio calculations. The TB is constructed by pairing PhTH 3 (Ph = phenyl; T = Si and Ge) with bases NH 3 , NHCH 2 , and the C 3 N 2 H 4 carbene. The TH 3 moves toward the base but only by a small amount in these dimers. However, when a Be 2+ or Mg 2+ dication is placed above the phenyl ring, the tetrel bond strength is greatly magnified reaching up to nearly 100 kcal mol −1 . This dication also induces a much higher degree of transfer which can be best categorized as half-transfer for the two N-bases and a near complete transfer for the carbene.  more » « less
Award ID(s):
1954310
NSF-PAR ID:
10326176
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
2
ISSN:
1463-9076
Page Range / eLocation ID:
1113 to 1119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The π-hole above the plane of the X 2 T′Y molecule (T′ = Si, Ge, Sn; X = F, Cl, H; Y = O, S) was allowed to interact with the TH hydride of TH(CH 3 ) 3 (T = Si, Ge, Sn). The resulting TH⋯T′ tetrel bond is quite strong, with interaction energies exceeding 30 kcal mol −1 . F 2 T′O engages in the strongest such bonds, as compared to F 2 T′S, Cl 2 T′O, or Cl 2 T′S. The bond weakens as T′ grows larger as in Si > Ge > Sn, despite the opposite trend in the depth of the π-hole. The reverse pattern of stronger tetrel bond with larger T is observed for the Lewis base TH(CH 3 ) 3 , even though the minimum in the electrostatic potential around the H is nearly independent of T. The TH⋯T′ arrangement is nonlinear which can be understood on the basis of the positions of the extrema in the molecular electrostatic potentials of the monomers. The tetrel bond is weakened when H 2 O forms an O⋯T′ tetrel bond with the second π-hole of F 2 T′O, and strengthened if H 2 O participates in an OH⋯O H-bond. 
    more » « less
  2. Abstract

    The T⋅⋅⋅N tetrel bond (TB) formed between TX3OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug‐cc‐pVTZ level. Complexes involving TH3OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T−O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.

     
    more » « less
  3. Two‐coordinate carbene Cu(Ι) amide complexes with sterically bulky groups such as the diisopropyl phenyl (dipp) on the carbenes have been shown to have comparable performance to the phosphorescent emitters bearing heavy atoms such as iridium and platinum. These bulky groups enforce a coplanar molecular structure and suppress the nonradiative decay rates. Here, three different two‐coordinate Cu(Ι) complexes were investigated that bear a common thiazole carbene, 3‐(2,6‐diisopropylphenyl)‐4,5‐dimethylthiazol‐2‐ylidene, with only a single dipp group, and carbazolyl ligands with substituents of varying steric bulkorthoto N. These substituents have a negligible impact on luminescence energies of the complexes but serve to modulate the rotation barriers along the metal–ligand coordinate bond. The geometric arrangement of ligands (syn‐ oranti‐conformer) in complexes with alkyl substituents were found to differ, beingsynin the solid state versusantiin solution as revealed by crystallographic analysis and nuclear magnetic resonance spectroscopy. In addition, calculations were performed to determine potential energy surfaces for different conformations of the three complexes to provide a theoretical evaluation of rotation barriers around the metal–ligand bond axis. The relationship between rotation barriers and photophysical properties demonstrate that rates for nonradiative decay decrease with increasing bulk of the substituents on the carbazolyl ligand.

     
    more » « less
  4. When attached to a tetrazole, a TtR 3 group (Tt = C, Si; R = H, F) engages in a Tt⋯N tetrel bond (TtB) with the Lewis base NCM (M = Li, Na). MP2/aug-cc-pVTZ calculations find that the Si⋯N TtB is rather strong, more than 20 kcal mol −1 for SiH 3 , and between 46 and 53 kcal mol −1 for SiF 3 . The C⋯N TtBs are relatively weaker, less than 8 kcal mol −1 . All of these bonds are intensified when a BH 3 or BF 3 molecule forms a triel bond to a N atom of the tetrazole ring, particularly for the C⋯N TtB, up to 11 kcal mol −1 . In these triads, the SiR 3 group displaces far enough along the line toward the base that it may be thought of as half transferred. 
    more » « less
  5. null (Ed.)
    A density functional theory exploration studies a range of ancillary coordinated ligands accompanying nitrogen oxyanions with the goal of promoting back donation towards varied nitrogen oxidation states. Evaluation of a suite of Ru and Rh metal complexes reveals minimum back donation to the κ 1 -nitrogen oxyanion ligand, even upon one-electron reduction. This reveals some surprising consequences of reduction, including redox activity at pyridine and nitrogen oxyanion dissociation. Bidentate nitrate was therefore considered, where ancillary ligands enforce geometries that maximize M–NO x orbital overlap. This strategy is successful and leads to full electron transfer in several cases to form a pyramidal radical NO 3 2− ligand. The impact of ancillary ligand on degree of nitrate reduction is probed by comparing the powerful o-donor tris-carbene borate (TCB) to a milder donor, tris-pyrazolyl borate (Tp). This reveals that with the milder Tp donor, nitrate reduction is only seen upon addition of a Lewis base. Protonation of neutral and anionic (TCB)Ru(κ 2 -NO 3 ) at both terminal and internal oxygens reveals exergonic N–O bond cleavage for the reduced species, with one electron coming from Ru, yielding a Ru III hydroxide product. Comparison of H + to Na + electrophile shows weaker progress towards N–O bond scission. Finally, calculations on (TCB)Fe(κ 2 -NO 3 ) and [(TCB)Fe(κ 2 -NO 3 )] – show that electron transfer to nitrate is possible even with an earth abundant 3d metal. 
    more » « less