skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Uncovering in vivo biochemical patterns from time-series metabolic dynamics
System biology relies on holistic biomolecule measurements, and untangling biochemical networks requires time-series metabolomics profiling. With current metabolomic approaches, time-series measurements can be taken for hundreds of metabolic features, which decode underlying metabolic regulation. Such a metabolomic dataset is untargeted with most features unannotated and inaccessible to statistical analysis and computational modeling. The high dimensionality of the metabolic space also causes mechanistic modeling to be rather cumbersome computationally. We implemented a faster exploratory workflow to visualize and extract chemical and biochemical dependencies. Time-series metabolic features (about 300 for each dataset) were extracted by Ridge Tracking-based Extract (RTExtract) on measurements from continuous in vivo monitoring of metabolism by NMR (CIVM-NMR) in Neurospora crassa under different conditions. The metabolic profiles were then smoothed and projected into lower dimensions, enabling a comparison of metabolic trends in the cultures. Next, we expanded incomplete metabolite annotation using a correlation network. Lastly, we uncovered meaningful metabolic clusters by estimating dependencies between smoothed metabolic profiles. We thus sidestepped the processes of time-consuming mechanistic modeling, difficult global optimization, and labor-intensive annotation. Multiple clusters guided insights into central energy metabolism and membrane synthesis. Dense connections with glucose 1-phosphate indicated its central position in metabolism in N . crassa . Our approach was benchmarked on simulated random network dynamics and provides a novel exploratory approach to analyzing high-dimensional metabolic dynamics.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Millet, Oscar
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Claesen, Jan (Ed.)
    ABSTRACT Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. The dysbiotic gut microbiota and its metabolite secretions play a significant role in CRC development and progression. In this study, we identified microbial and metabolic biomarkers applicable to CRC using a meta-analysis of metagenomic datasets from diverse geographical regions. We used LEfSe, random forest (RF), and co-occurrence network methods to identify microbial biomarkers. Geographic dataset-specific markers were identified and evaluated using area under the ROC curve (AUC) scores and random effect size. Co-occurrence networks analysis showed a reduction in the overall microbial associations and the presence of oral pathogenic microbial clusters in CRC networks. Analysis of predicted metabolites from CRC datasets showed the enrichment of amino acids, cadaverine, and creatine in CRC, which were positively correlated with CRC-associated microbes ( Peptostreptococcus stomatis , Gemella morbillorum , Bacteroides fragilis , Parvimonas spp., Fusobacterium nucleatum , Solobacterium moorei , and Clostridium symbiosum ), and negatively correlated with control-associated microbes. Conversely, butyrate, nicotinamide, choline, tryptophan, and 2-hydroxybutanoic acid showed positive correlations with control-associated microbes ( P < 0.05). Overall, our study identified a set of global CRC biomarkers that are reproducible across geographic regions. We also reported significant differential metabolites and microbe-metabolite interactions associated with CRC. This study provided significant insights for further investigations leading to the development of noninvasive CRC diagnostic tools and therapeutic interventions. IMPORTANCE Several studies showed associations between gut dysbiosis and CRC. Yet, the results are not conclusive due to cohort-specific associations that are influenced by genomic, dietary, and environmental stimuli and associated reproducibility issues with various analysis approaches. Emerging evidence suggests the role of microbial metabolites in modulating host inflammation and DNA damage in CRC. However, the experimental validations have been hindered by cost, resources, and cumbersome technical expertise required for metabolomic investigations. In this study, we performed a meta-analysis of CRC microbiota data from diverse geographical regions using multiple methods to achieve reproducible results. We used a computational approach to predict the metabolomic profiles using existing CRC metagenomic datasets. We identified a reliable set of CRC-specific biomarkers from this analysis, including microbial and metabolite markers. In addition, we revealed significant microbe-metabolite associations through correlation analysis and microbial gene families associated with dysregulated metabolic pathways in CRC, which are essential in understanding the vastly sporadic nature of CRC development and progression. 
    more » « less
  2. Abstract Motivation Time-series NMR has advanced our knowledge about metabolic dynamics. Before analyzing compounds through modeling or statistical methods, chemical features need to be tracked and quantified. However, because of peak overlap and peak shifting, the available protocols are time consuming at best or even impossible for some regions in NMR spectra. Results We introduce RTExtract (Ridge Tracking based Extract), a computer vision-based algorithm, to quantify time-series NMR spectra. The NMR spectra of multiple time points were formulated as a 3D surface. Candidate points were first filtered using local curvature and optima, then connected into ridges by a greedy algorithm. Interactive steps were implemented to refine results. Among 173 simulated ridges, 115 can be tracked (RMSD < 0.001). For reproducing previous results, RTExtract took less than two hours instead of ∼48 hours, and two instead of seven parameters need tuning. Multiple regions with overlapping and changing chemical shifts are accurately tracked. Availability Source code is freely available within Metabolomics toolbox GitHub repository ( and is implemented in MATLAB and R. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. ABSTRACT Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology. IMPORTANCE Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis , very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism. 
    more » « less
  4. Hallam, Steven J. (Ed.)
    ABSTRACT Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis ( i Nmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [ 13 C]bicarbonate and [ 13 C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO 2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO 2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira ’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCE Nitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13 C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria. 
    more » « less
  5. Mathematical models are often used to study the structure and dynamics of network-driven cellular processes. In cell biology, models representing biochemical reaction networks have provided significant insights but are often plagued by a dearth of available quantitative data necessary for simulation and analysis. This has in turn led to questions about the usefulness of biochemical network models with unidentifiable parameters and high-degree of parameter sloppiness. In response, approaches to incorporate highly-available non-quantitative data and use this data to improve model certainty have been undertaken with various degrees of success. Here we employ a Bayesian inference and Machine Learning approach to first explore how quantitative and non-quantitative data can constrain a mechanistic model of apoptosis execution, in which all models can be identified. We find that two orders of magnitude more ordinal data measurements than those typically collected are necessary to achieve the same accuracy as that obtained from a quantitative dataset. We also find that ordinal and nominal non-quantitative data on their own can be combined to reduce model uncertainty and thus improve model accuracy. Further analysis demonstrates that the accuracy and certainty of model predictions strongly depends on accurate formulations of the measurement as well as the size and make-up of the nonquantitative datasets. Finally, we demonstrate the potential of a data-driven Machine Learning measurement model to identify informative mechanistic features that predict or define nonquantitative cellular phenotypes, from a systems perspective. 
    more » « less