skip to main content


Title: Artificial intelligence “sees” split electrons
Chemical bonds between atoms are stabilized by the exchange-correlation (xc) energy, a quantum-mechanical effect in which “social distancing” by electrons lowers their electrostatic repulsion energy. Kohn-Sham density functional theory (DFT) ( 1 ) states that the electron density determines this xc energy, but the density functional must be approximated. This is usually done by satisfying exact constraints of the exact functional (making the approximation predictive), by fitting to data (making it interpolative), or both. Two exact constraints—the ensemble-based piecewise linear variation of the total energy with respect to fractional electron number ( 2 ) and fractional electron z -component of spin ( 3 )—require hard-to-control nonlocality. On page 1385 of this issue, Kirkpatrick et al. ( 4 ) have taken a big step toward more accurate predictions for chemistry through the machine learning of molecular data plus the fractional charge and spin constraints, expressed as data that a machine can learn.  more » « less
Award ID(s):
1939528
PAR ID:
10326295
Author(s) / Creator(s):
Date Published:
Journal Name:
Science
Volume:
374
Issue:
6573
ISSN:
0036-8075
Page Range / eLocation ID:
1322 to 1323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that ( a) the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and ( b) fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development.

     
    more » « less
  2. In density-functional theory, the exchange–correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r′), representing the probability depletion of finding an electron at r′ due to an electron at r. Accurate knowledge of n̄xc(r,r′) has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron–electron cusp using finite basis sets. Focusing on Hooke’s atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke’s atoms, the error introduced by the description of the electron–electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew–Burke–Ernzerhof and local density approximation XC hole models are assessed.

     
    more » « less
  3. Abstract

    The construction of a better exchange-correlation potential in time-dependent density functional theory (TDDFT) can improve the accuracy of TDDFT calculations and provide more accurate predictions of the properties of many-electron systems. Here, we propose a machine learning method to develop the energy functional and the Kohn–Sham potential of a time-dependent Kohn–Sham (TDKS) system is proposed. The method is based on the dynamics of the Kohn–Sham system and does not require any data on the exact Kohn–Sham potential for training the model. We demonstrate the results of our method with a 1D harmonic oscillator example and a 1D two-electron example. We show that the machine-learned Kohn–Sham potential matches the exact Kohn–Sham potential in the absence of memory effect. Our method can still capture the dynamics of the Kohn–Sham system in the presence of memory effects. The machine learning method developed in this article provides insight into making better approximations of the energy functional and the Kohn–Sham potential in the TDKS system.

     
    more » « less
  4. M. Lewin, Rupert L. (Ed.)
    Abstract: Lieb and Oxford (1981) derived rigorous lower bounds, in the form of local functionals of the electron density, on the indirect part of the Coulomb repulsion energy. The greatest lower bound for a given electron number N depends monotonically upon N, and the N→∞ limit is a bound for all N. These bounds have been shown to apply to the exact density functionals for the exchange- and exchange-correlation energies that must be approximated for an accurate and computationally efficient description of atoms, molecules, and solids. A tight bound on the exact exchange energy has been derived therefrom for two-electron ground states, and is conjectured to apply to all spin-unpolarized electronic ground states. Some of these and other exact constraints have been used to construct two generations of non-empirical density functionals beyond the local density approximation: the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA. 
    more » « less
  5. Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange–correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond. 
    more » « less