skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AEROKEY: Using Ambient Electromagnetic Radiation for Secure and Usable Wireless Device Authentication
Wireless connectivity is becoming common in increasingly diverse personal devices, enabling various interoperation- and Internet-based applications and services. More and more interconnected devices are simultaneously operated by a single user with short-lived connections, making usable device authentication methods imperative to ensure both high security and seamless user experience. Unfortunately, current authentication methods that heavily require human involvement, in addition to form factor and mobility constraints, make this balance hard to achieve, often forcing users to choose between security and convenience. In this work, we present a novel over-the-air device authentication scheme named AEROKEY that achieves both high security and high usability. With virtually no hardware overhead, AEROKEY leverages ubiquitously observable ambient electromagnetic radiation to autonomously generate spatiotemporally unique secret that can be derived only by devices that are closely located to each other. Devices can make use of this unique secret to form the basis of a symmetric key, making the authentication procedure more practical, secure and usable with no active human involvement. We propose and implement essential techniques to overcome challenges in realizing AEROKEY on low-cost microcontroller units, such as poor time synchronization, lack of precision analog front-end, and inconsistent sampling rates. Our real-world experiments demonstrate reliable authentication as well as its robustness against various realistic adversaries with low equal-error rates of 3.4% or less and usable authentication time of as low as 24 s.  more » « less
Award ID(s):
1845469 2107020
PAR ID:
10326397
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
6
Issue:
1
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user’s tapping rhythm. In addition to verifying the RFID card’s identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user’s secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero. 
    more » « less
  2. null (Ed.)
    User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities. 
    more » « less
  3. As mobile devices become increasingly integral to daily life, the need for robust security measures has intensified. Continuous user authentication (CUA) is an emerging paradigm designed to enhance security by verifying user identity throughout device usage, rather than solely at login. This study aims to explore user perceptions, experiences, and preferences concerning CUA methods, such as biometric scans (e.g., fingerprints, facial recognition) and behavioral analytics (e.g., typing patterns, swipe gestures). We will investigate the importance users place on continuous authentication for safeguarding personal data, as well as the usability challenges they encounter. Specifically, we will delve into how users perceive the reliability and accuracy of biometric and behavioral authentication methods, considering factors such as the perceived invasiveness of biometric scans and concerns about data privacy. Additionally, we will examine how perceptions and preferences for CUA vary across different age groups, as younger generations may be more accustomed to biometric authentication and less concerned about privacy implications, while older generations may have different preferences and concerns. The findings of this study will provide insights into user trust, privacy concerns, and the overall effectiveness of CUA in improving mobile security. By understanding user attitudes, this research seeks to inform the development of more intuitive and secure authentication solutions that align with user needs and expectations across various demographics. 
    more » « less
  4. Hara, T.; Yamaguchi, H. (Ed.)
    Prevalent wearables (e.g., smartwatches and activity trackers) demand high secure measures to protect users' private information, such as personal contacts, bank accounts, etc. While existing two-factor authentication methods can enhance traditional user authentication, they are not convenient as they require participations from users. Recently, manufacturing imperfections in hardware devices (e.g., accelerometers and WiFi interface) have been utilized for low-effort two-factor authentications. However, these methods rely on fixed device credentials that would require users to replace their devices once the device credentials are stolen. In this work, we develop a novel device authentication system, WatchID, that can identify a user's wearable using its vibration-based device credentials. Our system exploits readily available vibration motors and accelerometers in wearables to establish a vibration communication channel to capture wearables' unique vibration characteristics. Compared to existing methods, our vibration-based device credentials are reprogrammable and easy to use. We develop a series of data processing methods to mitigate the impact of noises and body movements. A lightweight convolutional neural network is developed for feature extraction and device authentication. Extensive experimental results using five smartwatches show that WatchID can achieve an average precision and recall of 98% and 94% respectively in various attacking scenarios. 
    more » « less
  5. Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments. 
    more » « less