skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complete vertebrate mitogenomes reveal widespread repeats and gene duplications
Abstract Background Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly. Results As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100–300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization. Conclusions Our results indicate that even in the “simple” case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.  more » « less
Award ID(s):
1818012
PAR ID:
10327046
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Genome Biology
Volume:
22
Issue:
1
ISSN:
1474-760X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences. 
    more » « less
  2. Abstract Mitochondrial genomes are known for their compact size and conserved gene order, however, recent studies employing long-read sequencing technologies have revealed the presence of atypical mitogenomes in some species. In this study, we assembled and annotated the mitogenomes of five Antarctic notothenioids, including four icefishes (Champsocephalus gunnari,C. esox,Chaenocephalus aceratus, andPseudochaenichthys georgianus) and the cold-specializedTrematomus borchgrevinki. Antarctic notothenioids are known to harbor some rearrangements in their mt genomes, however the extensive duplications in icefishes observed in our study have never been reported before. In the icefishes, we observed duplications of the protein coding geneND6, two transfer RNAs,and the control region with different copy number variants present within the same individuals and with someND6duplications appearing to follow the canonical Duplication-Degeneration-Complementation (DDC) model inC. esoxandC. gunnari. In addition, using long-read sequencing and k-mer analysis, we were able to detect extensive heteroplasmy inC. aceratusandC. esox. We also observed a large inversion in the mitogenome ofT. borchgrevinki, along with the presence of tandem repeats in its control region. This study is the first in using long-read sequencing to assemble and identify structural variants and heteroplasmy in notothenioid mitogenomes and signifies the importance of long-reads in resolving complex mitochondrial architectures. Identification of such wide-ranging structural variants in the mitogenomes of these fishes could provide insight into the genetic basis of the atypical icefish mitochondrial physiology and more generally may provide insights about their potential role in cold adaptation. 
    more » « less
  3. Abstract Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000. 
    more » « less
  4. Zufall, Rebecca (Ed.)
    Abstract Ciliates are microbial eukaryotes with distinct somatic and germline genomes. Postzygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programed genome rearrangements. Current studies usually focus on a few model species, where rearrangement features are annotated by aligning reference germline and somatic genomes. Although many high-quality somatic genomes have been assembled, a high-quality germline genome assembly is difficult to obtain due to its smaller DNA content and abundance of repetitive sequences. To overcome these hurdles, we propose a new pipeline, SIGAR (Split-read Inference of Genome Architecture and Rearrangements) to infer germline genome architecture and rearrangement features without a germline genome assembly, requiring only short DNA sequencing reads. As a proof of principle, 93% of rearrangement junctions identified by SIGAR in the ciliate Oxytricha trifallax were validated by the existing germline assembly. We then applied SIGAR to six diverse ciliate species without germline genome assemblies, including Ichthyophthirius multifilii, a fish pathogen. Despite the high level of somatic DNA contamination in each sample, SIGAR successfully inferred rearrangement junctions, short eliminated sequences, and potential scrambled genes in each species. This pipeline enables pilot surveys or exploration of DNA rearrangements in species with limited DNA material access, thereby providing new insights into the evolution of chromosome rearrangements. 
    more » « less
  5. Despite the wide use of plasmids in research and clinical production, the need to verify plasmid sequences is a bottleneck that is too often underestimated in the manufacturing process. Although sequencing platforms continue to improve, the method and assembly pipeline chosen still influence the final plasmid assembly sequence. Furthermore, few dedicated tools exist for plasmid assembly, especially for de novo assembly. Here, we evaluated short-read, long-read, and hybrid (both short and long reads) de novo assembly pipelines across three replicates of a 24-plasmid library. Consistent with previous characterizations of each sequencing technology, short-read assemblies had issues resolving GC-rich regions, and long-read assemblies commonly had small insertions and deletions, especially in repetitive regions. The hybrid approach facilitated the most accurate, consistent assembly generation and identified mutations relative to the reference sequence. Although Sanger sequencing can be used to verify specific regions, some GC-rich and repetitive regions were difficult to resolve using any method, suggesting that easily sequenced genetic parts should be prioritized in the design of new genetic constructs. 
    more » « less