Abstract Dynamic crack branching in unsaturated porous media holds significant relevance in various fields, including geotechnical engineering, geosciences, and petroleum engineering. This article presents a numerical investigation into dynamic crack branching in unsaturated porous media using a recently developed coupled micro‐periporomechanics (PPM) paradigm. This paradigm extends the PPM model by incorporating the micro‐rotation of the solid skeleton. Within this framework, each material point is equipped with three degrees of freedom: displacement, micro‐rotation, and fluid pressure. Consistent with the Cosserat continuum theory, a length scale associated with the micro‐rotation of material points is inherently integrated into the model. This study encompasses several key aspects: (1) Validation of the coupled micro‐PPM paradigm for effectively modeling crack branching in deformable porous media, (2) Examination of the transition from a single branch to multiple branches in porous media under drained conditions, (3) Simulation of single crack branching in unsaturated porous media under dynamic loading conditions, and (4) Investigation of multiple crack branching in unsaturated porous media under dynamic loading conditions. The numerical results obtained in this study are systematically analyzed to elucidate the factors that influence crack branching in porous media subjected to dynamic loading. Furthermore, the comprehensive numerical findings underscore the efficacy and robustness of the coupled micro‐PPM paradigm in accurately modeling dynamic crack branching in variably saturated porous media.
more »
« less
Global existence of weak solutions to unsaturated poroelasticity
We study unsaturated poroelasticity, i.e. , coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot’s well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards’ equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.
more »
« less
- PAR ID:
- 10327227
- Date Published:
- Journal Name:
- ESAIM: Mathematical Modelling and Numerical Analysis
- Volume:
- 55
- Issue:
- 6
- ISSN:
- 0764-583X
- Page Range / eLocation ID:
- 2849 to 2897
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geothermal energy harvest and foundations). Temperature increase can trigger localized failure and cracking in unsaturated porous media. This article investigates the shear banding and cracking in unsaturated porous media under non-isothermal conditions through a thermo–hydro–mechanical (THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical poromechanics using integral equations, which is robust in simulating continuous and discontinuous deformation in porous media. As a new contribution, we formulate a nonlocal THM constitutive model for unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm is used to implement the nonlocal THM constitutive model numerically. Numerical examples are presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear banding and cracking in unsaturated porous media under non-isothermal conditions. The numerical results are examined to study the effect of temperature variations on the formation of shear banding and cracking in unsaturated porous media.more » « less
-
Abstract The modeling of coupled fluid transport and deformation in a porous medium is essential to predict the various geomechanical process such as CO2 sequestration, hydraulic fracturing, and so on. Current applications of interest, for instance, that include fracturing or damage of the solid phase, require a nonlinear description of the large deformations that can occur. This paper presents a variational energy‐based continuum mechanics framework to model large‐deformation poroelasticity. The approach begins from the total free energy density that is additively composed of the free energy of the components. A variational procedure then provides the balance of momentum, fluid transport balance, and pressure relations. A numerical approach based on finite elements is applied to analyze the behavior of saturated and unsaturated porous media using a nonlinear constitutive model for the solid skeleton. Examples studied include the Terzaghi and Mandel problems; a gas–liquid phase‐changing fluid; multiple immiscible gases; and unsaturated systems where we model injection of fluid into soil. The proposed variational approach can potentially have advantages for numerical methods as well as for combining with data‐driven models in a Bayesian framework.more » « less
-
Abstract Dynamic shearing banding and fracturing in unsaturated porous media are significant problems in engineering and science. This article proposes a multiphase micro‐periporomechanics (PPM) paradigm for modeling dynamic shear banding and fracturing in unsaturated porous media. Periporomechanics (PPM) is a nonlocal reformulation of classical poromechanics to model continuous and discontinuous deformation/fracture and fluid flow in porous media through a single framework. In PPM, a multiphase porous material is postulated as a collection of a finite number of mixed material points. The length scale in PPM that dictates the nonlocal interaction between material points is a mathematical object that lacks a direct physical meaning. As a novelty, in the coupled PPM, a microstructure‐based material length scale is incorporated by considering micro‐rotations of the solid skeleton following the Cosserat continuum theory for solids. As a new contribution, we reformulate the second‐order work for detecting material instability and the energy‐based crack criterion and J‐integral for modeling fracturing in the PPM paradigm. The stabilized Cosserat PPM correspondence principle that mitigates the multiphase zero‐energy mode instability is augmented to include unsaturated fluid flow. We have numerically implemented the novel PPM paradigm through a dual‐way fractional‐step algorithm in time and a hybrid Lagrangian–Eulerian meshfree method in space. Numerical examples are presented to demonstrate the robustness and efficacy of the proposed PPM paradigm for modeling shear banding and fracturing in unsaturated porous media.more » « less
-
In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions.more » « less
An official website of the United States government

