skip to main content


Title: Solving Large-Scale Granular Resource Allocation Problems Efficiently with POP
Resource allocation problems in many computer systems can be formulated as mathematical optimization problems. However, finding exact solutions to these problems using off-the-shelf solvers is often intractable for large problem sizes with tight SLAs, leading system designers to rely on cheap, heuristic algorithms. We observe, however, that many allocation problems are granular: they consist of a large number of clients and resources, each client requests a small fraction of the total number of resources, and clients can interchangeably use different resources. For these problems, we propose an alternative approach that reuses the original optimization problem formulation and leads to better allocations than domain-specific heuristics. Our technique, Partitioned Optimization Problems (POP), randomly splits the problem into smaller problems (with a subset of the clients and resources in the system) and coalesces the resulting sub-allocations into a global allocation for all clients. We provide theoretical and empirical evidence as to why random partitioning works well. In our experiments, POP achieves allocations within 1.5% of the optimal with orders-of-magnitude improvements in runtime compared to existing systems for cluster scheduling, traffic engineering, and load balancing.  more » « less
Award ID(s):
1651570
PAR ID:
10327314
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
SOSP 2021
Page Range / eLocation ID:
521 to 537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing popularity of bike-sharing systems around the world has motivated recent attention to models and algorithms for their effective operation. Most of this literature focuses on their daily operation for managing asymmetric demand. In this work, we consider the more strategic question of how to (re)allocate dock-capacity in such systems. We develop mathematical formulations for variations of this problem (either for service performance over the course of one day or for a long-run-average) and exhibit discrete convex properties in associated optimization problems. This allows us to design a polynomial-time allocation algorithm to compute an optimal solution for this problem, which can also handle practically motivated constraints, such as a limit on the number of docks moved in the system. We apply our algorithm to data sets from Boston, New York City, and Chicago to investigate how different dock allocations can yield better service in these systems. Recommendations based on our analysis have led to changes in the system design in Chicago and New York City. Beyond optimizing for improved quality of service through better allocations, our results also provide a metric to compare the impact of strategically reallocating docks and the daily rebalancing of bikes. 
    more » « less
  2. Artificial intelligence, machine learning, and algorithmic techniques in general, provide two crucial abilities with the potential to improve decision-making in the context of allocation of scarce societal resources. They have the ability to flexibly and accurately model treatment response at the individual level, potentially allowing us to better match available resources to individuals. In addition, they have the ability to reason simultaneously about the effects of matching sets of scarce resources to populations of individuals. In this work, we leverage these abilities to study algorithmic allocation of scarce societal resources in the context of homelessness. In communities throughout the United States, there is constant demand for an array of homeless services intended to address different levels of need. Allocations of housing services must match households to appropriate services that continuously fluctuate in availability, while inefficiencies in allocation could “waste” scarce resources as households will remain in-need and re-enter the homeless system, increasing the overall demand for homeless services. This complex allocation problem introduces novel technical and ethical challenges. Using administrative data from a regional homeless system, we formulate the problem of “optimal” allocation of resources given data on households with need for homeless services. The optimization problem aims to allocate available resources such that predicted probabilities of household re-entry are minimized. The key element of this work is its use of a counterfactual prediction approach that predicts household probabilities of re-entry into homeless services if assigned to each service. Through these counterfactual predictions, we find that this approach has the potential to improve the efficiency of the homeless system by reducing re-entry, and, therefore, system-wide demand. However, efficiency comes with trade-offs - a significant fraction of households are assigned to services that increase probability of re-entry. To address this issue as well as the inherent fairness considerations present in any context where there are insufficient resources to meet demand, we discuss the efficiency, equity, and fairness issues that arise in our work and consider potential implications for homeless policies. 
    more » « less
  3. null (Ed.)
    A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Spatial-temporal allocation of resources is optimized to allocate electric scooters across urban areas, place charging stations for vehicles, and design efficient on-demand transit. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized methodologies have been used to tackle such problems, none of the approaches scale well for large-scale decision problems. We create a general approach to hierarchical planning that leverages structure in city-level CPS problems to tackle resource allocation under uncertainty. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from a major metropolitan area in the United States to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response. 
    more » « less
  4. We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e., preferences over the different resources). A standard notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers the agent’s own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known up front, the desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that, in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention in that any algorithm achieving additive counterfactual envy-freeness up to a factor of L T necessarily suffers an efficiency loss of at least [Formula: see text]. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness–efficiency point on this frontier. Our results provide guarantees for fair online resource allocation with high probability for multiple resource and multiple type settings. In simulation results, our algorithm provides allocations close to the optimal fair solution in hindsight, motivating its use in practical applications as the algorithm is able to adapt to any desired fairness efficiency trade-off. Funding: This work was supported by the National Science Foundation [Grants ECCS-1847393, DMS-1839346, CCF-1948256, and CNS-1955997] and the Army Research Laboratory [Grant W911NF-17-1-0094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2397 . 
    more » « less
  5. We consider the problem of A-B testing when the impact of the treatment is marred by a large number of covariates. Randomization can be highly inefficient in such settings, and thus we consider the problem of optimally allocating test subjects to either treatment with a view to maximizing the precision of our estimate of the treatment effect. Our main contribution is a tractable algorithm for this problem in the online setting, where subjects arrive, and must be assigned, sequentially, with covariates drawn from an elliptical distribution with finite second moment. We further characterize the gain in precision afforded by optimized allocations relative to randomized allocations, and show that this gain grows large as the number of covariates grows. Our dynamic optimization framework admits several generalizations that incorporate important operational constraints such as the consideration of selection bias, budgets on allocations, and endogenous stopping times. In a set of numerical experiments, we demonstrate that our method simultaneously offers better statistical efficiency and less selection bias than state-of-the-art competing biased coin designs. 
    more » « less