skip to main content


Title: Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Trade-off Curve
We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e., preferences over the different resources). A standard notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers the agent’s own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known up front, the desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that, in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention in that any algorithm achieving additive counterfactual envy-freeness up to a factor of L T necessarily suffers an efficiency loss of at least [Formula: see text]. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness–efficiency point on this frontier. Our results provide guarantees for fair online resource allocation with high probability for multiple resource and multiple type settings. In simulation results, our algorithm provides allocations close to the optimal fair solution in hindsight, motivating its use in practical applications as the algorithm is able to adapt to any desired fairness efficiency trade-off. Funding: This work was supported by the National Science Foundation [Grants ECCS-1847393, DMS-1839346, CCF-1948256, and CNS-1955997] and the Army Research Laboratory [Grant W911NF-17-1-0094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2397 .  more » « less
Award ID(s):
1955997 1948256 1847393
NSF-PAR ID:
10437348
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Operations Research
ISSN:
0030-364X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A standard notion of 'fairness' in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. For divisible resources, when the number of individuals of each type are known upfront, the above desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously.We show that in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention, in that any algorithm achieving additive counterfactual envy-freeness up to a factor of LT necessarily suffers a efficiency loss of at least 1 / LT. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness-efficiency point on this frontier. 
    more » « less
  2. We study fair division of indivisible chores among n agents with additive disutility functions. Two well-studied fairness notions for indivisible items are envy-freeness up to one/any item (EF1/EFX) and the standard notion of economic efficiency is Pareto optimality (PO). There is a noticeable gap between the results known for both EF1 and EFX in the goods and chores settings. The case of chores turns out to be much more challenging. We reduce this gap by providing slightly relaxed versions of the known results on goods for the chores setting. Interestingly, our algorithms run in polynomial time, unlike their analogous versions in the goods setting.We introduce the concept of k surplus in the chores setting which means that up to k more chores are allocated to the agents and each of them is a copy of an original chore. We present a polynomial-time algorithm which gives EF1 and PO allocations with n-1 surplus.We relax the notion of EFX slightly and define tEFX which requires that the envy from agent i to agent j is removed upon the transfer of any chore from the i's bundle to j's bundle. We give a polynomial-time algorithm that in the chores case for 3 agents returns an allocation which is either proportional or tEFX. Note that proportionality is a very strong criterion in the case of indivisible items, and hence both notions we guarantee are desirable.

     
    more » « less
  3. We initiate the study of fairness among classes of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into a set of classes and the matching is required to be fair with respect to the classes. We adopt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic and randomized algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings).For matching indivisible items, we propose an adaptive-priority-based algorithm, MATCH-AND-SHIFT, prove that it achieves (1/2)-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, EQUAL-FILLING, that achieves (1-1/e)-approximation of class envy-freeness and class proportionality; we prove (1-1/e) to be tight for class proportionality and establish a 3/4 upper bound on class envy-freeness. 
    more » « less
  4. Summary

    Fair allocation has been studied intensively in both economics and computer science. Many existing mechanisms that consider fairness of resource allocation focus on a single resource. With the advance of cloud computing that centralizes multiple types of resources under one shared platform, multi‐resource allocation has come into the spotlight. In fact, fair/efficient multi‐resource allocation has become a fundamental problem in any shared computer system. The widely used solution is to partition resources into bundles that contain fixed amounts of different resources, so that multiple resources are abstracted as a single resource. However, this abstraction cannot satisfy different demands from heterogeneous users, especially on ensuring fairness among users competing for resources with different capacity limits. A promising approach to this problem is dominant resource fairness (DRF), which tries to equalize each user's dominant share (share of a user's most highly demanded resource, that is, the largest fraction of any resource that the user has required for a task), but this method may still suffer from significant loss of efficiency (i.e., some resources are underused). This article develops a new allocation mechanism based on DRF aiming to balance fairness and efficiency. We consider fairness not only in terms of a user's dominant resource, but also in another resource dimension which is secondarily desired by this user. We call this allocation mechanism 2‐dominant resource fairness (2‐DF). Then, we design a non‐trivial on‐line algorithm to find a 2‐DF allocation and extend this concept tok‐dominant resource fairness (k‐DF).

     
    more » « less
  5. In fair division,equitabilitydictates that each partic-ipant receives the same level of utility. In this work,we study equitable allocations of indivisible goodsamong agents with additive valuations. While priorwork has studied (approximate) equitability in iso-lation, we consider equitability in conjunction withother well-studied notions of fairness and economicefficiency. We show that the Leximin algorithm pro-duces an allocation that satisfies equitability up toany good and Pareto optimality. We also give anovel algorithm that guarantees Pareto optimalityand equitability up to one good in pseudopolyno-mial time. Our experiments on real-world prefer-ence data reveal that approximate envy-freeness, ap-proximate equitability, and Pareto optimality canoften be achieved simultaneously. 
    more » « less