Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method.
more »
« less
Pluto near the edge of chaos
Many of the unusual properties of Pluto’s orbit are widely accepted as evidence for the orbital migration of the giant planets in early solar system history. However, some properties remain an enigma. Pluto’s long-term orbital stability is supported by two special properties of its orbit that limit the location of its perihelion in azimuth and in latitude. We revisit Pluto’s orbital dynamics with a view to elucidating the individual and collective gravitational effects of the giant planets on constraining its perihelion location. While the resonant perturbations from Neptune account for the azimuthal constraint on Pluto’s perihelion location, we demonstrate that the long-term and steady persistence of the latitudinal constraint is possible only in a narrow range of additional secular forcing which arises fortuitously from the particular orbital architecture of the other giant planets. Our investigations also find that Jupiter has a largely stabilizing influence whereas Uranus has a largely destabilizing influence on Pluto’s orbit. Overall, Pluto’s orbit is rather surprisingly close to a zone of strong chaos.
more »
« less
- Award ID(s):
- 1824869
- PAR ID:
- 10327772
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 15
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The most distant known trans-Neptunian objects (TNOs), those with perihelion distance above 38 au and semimajor axis above 150 au, are of interest for their potential to reveal past, external, or present but unseen perturbers. Realizing this potential requires understanding how the known planets influence their orbital dynamics. We use a recently developed Poincaré mapping approach for orbital phase space studies of the circular planar restricted three-body problem, which we have extended to the case of the 3D restricted problem withNplanetary perturbers. With this approach, we explore the dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets. We find that, counter to common expectations, almost none of these TNOs are far removed from Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1 and 36:1 resonances, respectively. Five objects can be ruled currently nonresonant, despite their large orbital uncertainties, because our mapping approach determines the resonance boundaries in angular phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that Neptune’s resonances impart a modest (few percent) nonuniformity in the longitude of perihelion distribution of the currently observable distant TNOs. While not large enough to explain the observed clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future, larger TNO data sets.more » « less
-
Abstract With orbital periods longer than 200 yr, most long-period comets (LPCs) remain undiscovered until they are in-bound toward perihelion. The comets that pass close to Earth’s orbit are potentially hazardous objects. Those with orbital periods up to ∼4000 yr tend to have passed close to Earth’s orbit in a previous orbit and produced a meteoroid stream dense enough to be detected at Earth as a meteor shower. In anticipation of Rubin Observatory’s Legacy Survey of Space and Time (LSST), we investigate how these meteor showers can guide dedicated searches for their parent comets. Assuming search parameters informed by LSST, we calculated where the 17 known parent bodies of LPC meteor showers would have been discovered based on a cloud of synthetic comets generated from the shower properties as measured at Earth. We find that the synthetic comets predict the on-sky location of the parent comets at the time of their discovery. The parent comet’s location on average would have been 1.°51 ± 1.°19 from a line fit through the synthetic comet cloud. The difference between the heliocentric distance of the parent and mean heliocentric distance of synthetic comets on the line was 2.09 ± 1.89 au for comets with unknown absolute nuclear magnitudes and 0.96 ± 0.80 au for comets with known absolute nuclear magnitudes. We applied this method to theσ-Hydrids, the proposed meteor shower of comet Nishimura, and found that it successfully matched the pre-covery location of this comet 8 months prior to Nishimura’s discovery.more » « less
-
The Rossiter-McLaughlin (RM) effect is a method that allows us to measure the orbital obliquity of planets, which is an important constraint that has been used to understand the formation and migration mechanisms of planets, especially for hot Jupiters. In this paper, we present the RM observation of the Neptune-sized long-period transiting planet HIP41378 d. Those observations were obtained using the HARPS-N/TNG and ESPRESSO/ESO-VLT spectrographs over two transit events in 2019 and 2022. The analysis of the data with both the classical RM and the RM Revolutions methods allows us to confirm that the orbital period of this planet is ~278 days and that the planet is on a prograde orbit with an obliquity of λ = 57.1 −17.9 +26.1 °, a value which is consistent between both methods. HIP41378 d is the longest period planet for which the obliquity has been measured so far. We do not detect transit timing variations with a precision of 30 and 100 minutes for the 2019 and 2022 transits, respectively. This result also illustrates that the RM effect provides a solution to follow up on the transit of small and long-period planets such as those that will be detected by ESA's forthcoming PLATO mission.more » « less
-
ABSTRACT The trans-Neptunian scattered disc exhibits unexpected dynamical structure, ranging from an extended dispersion of perihelion distance to a clustered distribution in orbital angles. Self-gravitational modulation of the scattered disc has been suggested in the literature as an alternative mechanism to Planet nine for sculpting the orbital architecture of the trans-Neptunian region. The numerics of this hypothesis have hitherto been limited to N < O(103) superparticle simulations that omit direct gravitational perturbations from the giant planets and instead model them as an orbit-averaged (quadrupolar) potential, through an enhanced J2 moment of the central body. For sufficiently massive discs, such simulations reveal the onset of collective dynamical behaviour – termed the ‘inclination instability’ – wherein orbital circularisation occurs at the expense of coherent excitation of the inclination. Here, we report N = O(104) GPU-accelerated simulations of a self-gravitating scattered disc (across a range of disc masses spanning 5–40 M⊕) that self-consistently account for intraparticle interactions as well as Neptune’s perturbations. Our numerical experiments show that even under the most favourable conditions, the inclination instability never ensues. Instead, due to scattering, the disc depletes. While our calculations show that a transient lopsided structure can emerge within the first few hundreds of Myr, the terminal outcomes of these calculations systematically reveal a scattered disc that is free of any orbital clustering. We conclude thus that the inclination instability mechanism is an inadequate explanation of the observed architecture of the Solar system.more » « less
An official website of the United States government

