Abstract This paper presents a novel technique to fabricate metallic nanowires in selective areas on a Si substrate. Thermoplastic drawing of viscous metallic glass from cavities etched in Si can produce metallic nanowires. The length and diameter of nanowires can be controlled by adjusting the drawing conditions without changing the Si mold. A thin metal shadow mask is stacked above the Si mold during thermoplastic drawing to fabricate the nanowires only in specific locations. The mask restricts the flow of metallic glass to predefined shapes on the mask, resulting in the formation of nanowires in selected areas on Si. An Al foil-based mask made by a benchtop vinyl cutter is used to demonstrate the proof-of-concept. Even a simple Al foil mask enables the positioning of metallic nanowires in selective areas as small as 200 µm on Si. The precision of the vinyl cutter limits the smallest dimensions of the patterned areas, which can be further improved by using laser-fabricated stencil masks. Results show that a single row of metallic glass nanowires can be patterned on Si using selective thermoplastic drawing. Controllable positioning of metallic nanowires on substrates can enable new applications and characterization techniques for nanostructures.
more »
« less
Review of Thermoplastic Drawing with Bulk Metallic Glasses
This study summarizes the recent progress in thermoplastic drawing of bulk metallic glasses. The integration of drawing with templated embossing enables the fabrication of arrays of high-aspect-ratio nanostructures whereas the earlier drawing methodologies are limited to a single fiber. The two-step drawing can produce metallic glass structures such as, vertically aligned nanowires on substrates, nanoscale tensile specimens, hollow microneedles, helical shafts, and micro-yarns, which are challenging to fabricate with other thermoplastic forming operations. These geometries will open new applications for bulk metallic glasses in the areas of sensors, optical absorption, transdermal drug-delivery, and high-throughput characterization of size-effects. In this article, we review the emergence of template-based thermoplastic drawing in bulk metallic glasses. The review focuses on the development of experimental set-up, the quantitative description of drawing process, and the versatility of drawing methodology.
more »
« less
- PAR ID:
- 10327867
- Date Published:
- Journal Name:
- Metals
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2075-4701
- Page Range / eLocation ID:
- 518
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reducing the sample size can profoundly impact properties of bulk metallic glasses. Here, we systematically reduce the length scale of Au and Pt-based metallic glasses and study their vitrification behavior and atomic mobility. For this purpose, we exploit fast scanning calorimetry (FSC) allowing to study glassy dynamics in an exceptionally wide range of cooling rates and frequencies. We show that the mainαrelaxation process remains size independent and bulk-like. In contrast, we observe pronounced size dependent vitrification kinetics in micrometer-sized glasses, which is more evident for the smallest samples and at low cooling rates, resulting in more than 40 K decrease in fictive temperature,Tf, with respect to the bulk. We discuss the deep implications on how this outcome can be used to convey glasses to low energy states.more » « less
-
Bulk metallic glasses (BMGs) have successfully been used to replicate molds that are structured at the nano- and even atomic scale through thermoplastic forming (TPF), an ability that was speculated to be rooted in the glass’ featureless atomic structure. These previous demonstrations of atomically precise imprinting, however, were performed under conditions where mold atomic feature dimensions coincided with the unit cell size of constituents in the BMG. In order to evaluate if accurate atomic-scale replication is possible in general, i.e., independent of the accidental presence of favorable constituent size/feature size relationships, we have used Pt57.5Cu14.7Ni5.3P22.5 to replicate three different crystalline facets of LaAlO3 single crystals, each exposing distinct atomic step heights. We find that in all cases, the terraced surface termination can be copied with remarkable fidelity, corroborating that BMGs when thermoplastic formed are capable of adapting to any externally imposed confinement with sub-angstrom precision without being limited by factors related to the specifics of their internal structure. This unprecedented capability of quasi-limitless replication fidelity reveals that the deformation mechanism in the supercooled liquid state of BMGs is essentially homogeneous and suggests TPF of BMGs to be a versatile toolbox for atomic and precision nanoscale imprinting.more » « less
-
Poisson’s ratio (ν) defines a material’s propensity to laterally expand upon compression, or laterally shrink upon tension for non-auxetic materials. This fundamental metric has traditionally, in some fields, been assumed to be a material-independent constant, but it is clear that it varies with composition across glasses, ceramics, metals, and polymers. The intrinsically elastic metric has also been suggested to control a range of properties, even beyond the linear-elastic regime. Notably, metallic glasses show a striking brittle-to-ductile (BTD) transition for ν-values above ~0.32. The BTD transition has also been suggested to be valid for oxide glasses, but, unfortunately, direct prediction of Poisson’s ratio from chemical composition remains challenging. With the long-term goal to discover such high-ν oxide glasses, we here revisit whether previously proposed relationships between Poisson’s ratio and liquid fragility (m) and atomic packing density (Cg) hold for oxide glasses, since this would enable m and Cg to be used as surrogates for ν. To do so, we have performed an extensive literature review and synthesized new oxide glasses within the zinc borate and aluminoborate families that are found to exhibit high Poisson’s ratio values up to ~0.34. We are not able to unequivocally confirm the universality of the Novikov-Sokolov correlation between ν and m and that between ν and Cg for oxide glass-formers, nor for the organic, ionic, chalcogenide, halogenide, or metallic glasses. Despite significant scatter, we do, however, observe an overall increase in ν with increasing m and Cg, but it is clear that additional structural details besides m or Cg are needed to predict and understand the composition dependence of Poisson’s ratio. Finally, we also infer from literature data that, in addition to high ν, high Young’s modulus is also needed to obtain glasses with high fracture toughness.more » « less
-
Abstract Metallic glasses are noncrystalline solid metals that have high strength, excellent corrosion resistance, and impressive hardness compared to their crystalline counterparts. A modern understanding of how glasses are formed along with an appreciation for the high ultimate yield strength of metallic glasses are leading to a boon in applications for these unique materials.more » « less
An official website of the United States government

