skip to main content


Search for: All records

Award ID contains: 1919445

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study summarizes the recent progress in thermoplastic drawing of bulk metallic glasses. The integration of drawing with templated embossing enables the fabrication of arrays of high-aspect-ratio nanostructures whereas the earlier drawing methodologies are limited to a single fiber. The two-step drawing can produce metallic glass structures such as, vertically aligned nanowires on substrates, nanoscale tensile specimens, hollow microneedles, helical shafts, and micro-yarns, which are challenging to fabricate with other thermoplastic forming operations. These geometries will open new applications for bulk metallic glasses in the areas of sensors, optical absorption, transdermal drug-delivery, and high-throughput characterization of size-effects. In this article, we review the emergence of template-based thermoplastic drawing in bulk metallic glasses. The review focuses on the development of experimental set-up, the quantitative description of drawing process, and the versatility of drawing methodology. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. We present a comparative study of the tribological properties of Pd-, Pt-, and Zr-based bulk metallic glasses (BMG-Pd, BMG-Pt, and BMG-Zr, respectively) under unlubricated conditions. In particular, micro-tribometry is utilized with a 52,100 steel ball, showing that BMG-Pt exhibits a significantly higher coefficient of friction (COF) (0.58 ± 0.08) when compared with BMG-Pd (0.30 ± 0.02) and BMG-Zr (0.20 ± 0.03). Topographical roughness on and off wear scars is characterized via atomic force microscopy (AFM), with results that do not correlate with the observed frictional behavior. On the other hand, scanning electron microscopy (SEM) is utilized to reveal contrasting wear mechanisms for the three samples: while BMG-Pd and BMG-Zr exhibit predominantly abrasive wear, there is evidence of adhesive wear on BMG-Pt. Consequently, the occurrence of adhesive wear emerges as a potential mechanism behind the observation of relatively high coefficients of friction on BMG-Pt, suggesting stronger interactions with steel when compared with the other BMG samples. 
    more » « less
  5. The friction and wear behavior of palladium (Pd)-rich amorphous alloy (Pd43Cu27Ni10P20) against 440C stainless steel under ionic liquids as lubricants, i.e., 1-nonyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([C9C1im][NTf2]), were investigated using a ball-on-disc reciprocating tribometer at ambient, 100 and 200 °C with different sliding speeds of 3 and 7 mm/s, whose results were compared to those from crystalline Pd samples. The measured coefficient of friction (COF) and wear were affected by both temperature and sliding speed. The COF of crystalline Pd samples dramatically increased when the temperature increased, whereas the COF of the amorphous Pd alloy samples remained low. As the sliding speed increased, the COF of both Pd samples showed decreasing trends. From the analysis of a 3D surface profilometer and scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) data, three types of wear (i.e., delamination, adhesive, and abrasive wear) were observed on the crystalline Pd surfaces, whereas the amorphous Pd alloy surfaces produced abrasive wear only. In addition, X-ray photoelectron spectroscopy (XPS) measurements were performed to study the formation of tribofilm. It was found that the chemical reactivity at the contacting interface increased with temperature and sliding contact speed. The ionic liquids (ILs) were effective as lubricants when the applied temperature and sliding speed were 200 °C and 7 mm/s, respectively. 
    more » « less