skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges in Information-Mining the Materials Literature: A Case Study and Perspective
The rapid development and application of machine learning (ML) techniques in materials science have led to new tools for machine-enabled and autonomous/high-throughput materials design and discovery. Alongside, efforts to extract data from traditional experiments in the published literature with natural language processing (NLP) algorithms provide opportunities to develop tremendous data troves for these in silico design and discovery endeavors. While NLP is used in all aspects of society, its application in materials science is still in the very early stages. This perspective provides a case study on the application of NLP to extract information related to the preparation of organic materials. We present the case study at a basic level with the aim to discuss these technologies and processes with researchers from diverse scientific backgrounds. We also discuss the challenges faced in the case study and provide an assessment to improve the accuracy of NLP techniques for materials science with the aid of community contributions.  more » « less
Award ID(s):
2019574
PAR ID:
10328023
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemistry of Materials
ISSN:
0897-4756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS and HOOMD-blue. 
    more » « less
  2. We explore the possibility of using natural language processing (NLP) and generative artificial intelligence (GAI) to streamline the process of thematic analysis (TA) for qualitative research. We followed traditional TA phases to demonstrate areas of alignment and discordance between (a) steps one might take with NLP and GAI and (b) traditional thematic analysis. Using a case study, we illustrate the application of this workflow to a real-world dataset. We start with processes involved in data analysis and translate those into analogous steps in a workflow that uses NLP and GAI. We then discuss the potential benefits and limitations of these NLP and GAI techniques, highlighting points of convergence and divergence with thematic analysis. Then, we highlight the importance of the central role of researchers during the process of NLP and GAI-assisted thematic analysis. Finally, we conclude with a discussion of the implications of this approach for qualitative research and suggestions for future work. Researchers who are interested in AI-assisted methods can benefit from the roadmap we provide in this study to understand the current landscape of NLP and GAI models for qualitative research. 
    more » « less
  3. Thanks to the rapid advances in artificial intelligence, AI for science (AI4Science) has emerged as one of the new promising research directions for modern science and engineering. In this review, we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental design methods for accelerating the discovery of novel functional materials as well as enhancing the understanding of composition-process-structure-property relationships. We specifically discuss the challenges and opportunities in integrating prior scientific knowledge and physics principles with AI and machine learning (ML) models for accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic regression are detailed in the review, along with several detailed case studies and results in materials discovery. 
    more » « less
  4. Abstract Contemporary materials science has seen an increasing application of various artificial intelligence techniques in an attempt to accelerate the materials discovery process using forward modeling for predictive analysis and inverse modeling for optimization and design. Over the last decade or so, the increasing availability of computational power and large materials datasets has led to a continuous evolution in the complexity of the techniques used to advance the frontier. In this Review, we provide a high-level overview of the evolution of artificial intelligence in contemporary materials science for the task of materials property prediction in forward modeling. Each stage of evolution is accompanied by an outline of some of the commonly used methodologies and applications. We conclude the work by providing potential future ideas for further development of artificial intelligence in materials science to facilitate the discovery, design, and deployment workflow. Graphical abstract 
    more » « less
  5. Abstract First-principles techniques for electronic transport property prediction have seen rapid progress in recent years. However, it remains a challenge to predict properties of heterostructures incorporating fabrication-dependent variability. Machine-learning (ML) approaches are increasingly being used to accelerate design and discovery of new materials with targeted properties, and extend the applicability of first-principles techniques to larger systems. However, few studies exploited ML techniques to characterize relationships between local atomic structures and global electronic transport coefficients. In this work, we propose an electronic-transport-informatics (ETI) framework that trains on ab initio models of small systems and predicts thermopower of fabricated silicon/germanium heterostructures, matching measured data. We demonstrate application of ML approaches to extract important physics that determines electronic transport in semiconductor heterostructures, and bridge the gap between ab initio accessible models and fabricated systems. We anticipate that ETI framework would have broad applicability to diverse materials classes. 
    more » « less