skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting Experimental Sepsis Survival with a Mathematical Model of Acute Inflammation
Sepsis is characterized by an overactive, dysregulated inflammatory response that drives organ dysfunction and often results in death. Mathematical modeling has emerged as an essential tool for understanding the underlying complex biological processes. A system of four ordinary differential equations (ODEs) was developed to simulate the dynamics of bacteria, the pro- and anti-inflammatory responses, and tissue damage (whose molecular correlate is damage-associated molecular pattern [DAMP] molecules and which integrates inputs from the other variables, feeds back to drive further inflammation, and serves as a proxy for whole-organism health status). The ODE model was calibrated to experimental data from E. coli infection in genetically identical rats and was validated with mortality data for these animals. The model demonstrated recovery, aseptic death, or septic death outcomes for a simulated infection while varying the initial inoculum, pathogen growth rate, strength of the local immune response, and activation of the pro-inflammatory response in the system. In general, more septic outcomes were encountered when the initial inoculum of bacteria was increased, the pathogen growth rate was increased, or the host immune response was decreased. The model demonstrated that small changes in parameter values, such as those governing the pathogen or the immune response, could explain the experimentally observed variability in mortality rates among septic rats. A local sensitivity analysis was conducted to understand the magnitude of such parameter effects on system dynamics. Despite successful predictions of mortality, simulated trajectories of bacteria, inflammatory responses, and damage were closely clustered during the initial stages of infection, suggesting that uncertainty in initial conditions could lead to difficulty in predicting outcomes of sepsis by using inflammation biomarker levels.  more » « less
Award ID(s):
1852146 1654019
PAR ID:
10328031
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Systems Biology
Volume:
1
ISSN:
2674-0702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I). We demonstrate that the 18-mer protects against sepsis-related injury and improves survival in cecal ligation and puncture mice and reduces inflammation in an endotoxemia mouse model. The 18-mer neutralizes the cytotoxic histone-3 (H3) through direct interaction with the protein. Furthermore, the 18-mer enlists the actions of ApoA-I to dissociate the complex of HMGB1 and lipopolysaccharide, a toxic complex contributing to cell death and tissue damage in sepsis. Our study provides strong evidence that the 18-mer mitigates inflammatory damage in sepsis by targeting numerous mediators, setting it apart from other potential therapies with a single target. 
    more » « less
  2. Abstract Immune response is critical in septic wound healing. The aberrant and imbalanced signaling dynamics primarily cause a dysfunctional innate immune response, exacerbating pathogen invasion of injured tissue and further stalling the healing process. To design biological controllers that regulate the critical divergence of the immune response during septicemia, we need to understand the intricate differences in immune cell dynamics and coordinated molecular signals of healthy and sepsis injury. Here, we deployed an ordinary differential equation (ODE)-based model to capture the hyper and hypo-inflammatory phases of sepsis wound healing. Our results indicate that impaired macrophage polarization leads to a high abundance of monocytes, M1, and M2 macrophage phenotypes, resulting in immune paralysis. Using a model-based analysis framework, we designed a biological controller which successfully regulates macrophage dysregulation observed in septic wounds. Our model describes a systems biology approach to predict and explore critical parameters as potential therapeutic targets capable of transitioning septic wound inflammation toward a healthy, wound-healing state. 
    more » « less
  3. Abstract Chronic infection withHelicobacter pyloriincreases risk of gastric diseases including gastric cancer. Despite development of a robust immune response,H. pyloripersists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection withH. pyloristrains which encode thecagType IV Secretion System (cag T4SS). ThecagT4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro‐inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response toH. pyloriinfection, the host produces a variety of antimicrobial molecules, including the iron‐binding glycoprotein, lactoferrin. Our work shows that apo‐lactoferrin exerts antimicrobial activity againstH. pyloriunder iron‐limited conditions, while holo‐lactoferrin enhances bacterial growth. CulturingH. pyloriin the presence of holo‐lactoferrin prior to co‐culture with gastric epithelial cells, results in repression of thecag T4SS activity. Concomitantly, a decrease in biogenesis ofcag T4SS pili at the host‐pathogen interface was observed under these culture conditions by high‐resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro‐inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment ofH. pylori‐related disease. 
    more » « less
  4. Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infectionMycoplasma gallisepticum(MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3’-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs. 
    more » « less
  5. Bacterial communities in and on wild hosts are increasingly appreciated for their importance in host health. Through both direct and indirect interactions, bacteria lining vertebrate gut mucosa provide hosts protection against infectious pathogens, sometimes even in distal body regions through immune regulation. In house finches ( Haemorhous mexicanus ), the bacterial pathogen Mycoplasma gallisepticum (MG) causes conjunctivitis, with ocular inflammation mediated by pro- and anti-inflammatory cytokines and infection triggering MG-specific antibodies. Here, we tested the role of gut bacteria in host responses to MG by using oral antibiotics to perturb bacteria in the gut of captive house finches prior to experimental inoculation with MG. We found no clear support for an impact of gut bacterial disruption on conjunctival pathology, MG load, or plasma antibody levels. However, there was a non-significant trend for birds with intact gut communities to have greater conjunctival pathology, suggesting a possible impact of gut bacteria on pro-inflammatory cytokine stimulation. Using 16S bacterial rRNA amplicon sequencing, we found dramatic differences in cloacal bacterial community composition between captive, wild-caught house finches in our experiment and free-living finches from the same population, with lower bacterial richness and core communities composed of fewer genera in captive finches. We hypothesize that captivity may have affected the strength of results in this experiment, necessitating further study with this consideration. The abundance of anthropogenic impacts on wildlife and their bacterial communities, alongside the emergence and spread of infectious diseases, highlights the importance of studies addressing the role of commensal bacteria in health and disease, and the consequences of gut bacterial shifts on wild hosts. 
    more » « less