All exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.
more »
« less
Mesoscale, Tidal, and Seasonal/Interannual Drivers of the Weddell Sea Overturning Circulation
The Weddell Sea supplies 40–50% of the Antarctic BottomWaters that fill the global ocean abyss, and therefore exerts significant influence over global circulation and climate. Previous studies have identified a range of different processes that may contribute to dense shelf water (DSW) formation and export on the southern Weddell Sea continental shelf. However, the relative importance of these processes has not been quantified, which hampers prioritization of observational deployments and development of model parameterizations in this region. In this study a high-resolution (1/12°) regional model of the southern Weddell Sea is used to quantify the overturning circulation and decompose it into contributions due to multi-annual mean flows, seasonal/interannual variability, tides, and other sub-monthly variability. It is shown that tides primarily influence the overturning by changing the melt rate of the Filchner-Ronne Ice Shelf (FRIS). The resulting ~0.2 Sv decrease in DSW transport is comparable to the magnitude of the overturning in the FRIS cavity, but small compared to DSW export across the continental shelf break. Seasonal/interannual fluctuations exert a modest influence on the overturning circulation due to the relatively short (8-year) analysis period. Analysis of the transient energy budget indicates that the non-tidal, sub-monthly variability is primarily baroclinically-generated eddies associated with dense overflows. These eddies play a comparable role to the mean flow in exporting dense shelf waters across the continental shelf break, and account for 100% of the transfer of heat onto the continental shelf. The eddy component of the overturning is sensitive to model resolution, decreasing by a factor of ~2 as the horizontal grid spacing is refined from 1/3° to 1/12°.
more »
« less
- Award ID(s):
- 1751386
- PAR ID:
- 10328142
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 51
- Issue:
- 12
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 3695-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Antarctic Bottom Water is primarily formed via overflows of dense shelf water (DSW) around the Antarctic continental margins. The dynamics of these overflows therefore influence the global abyssal stratification and circulation. Previous studies indicate that dense overflows can be unstable, energizing topographic Rossby waves (TRW) over the continental slope. However, it remains unclear how the wavelength and frequency of the TRWs are related to the properties of the overflowing DSW and other environmental conditions, and how the TRW properties influence the downslope transport of DSW. This study uses idealized high-resolution numerical simulations to investigate the dynamics of overflow-forced TRWs and the associated downslope transport of DSW. It is shown that the propagation of TRWs is constrained by the geostrophic along-slope flow speed of the DSW and by the dynamics of linear plane waves, allowing the wavelength and frequency of the waves to be predicted a priori. The rate of downslope DSW transport depends nonmonotonically on the slope steepness: steep slopes approximately suppress TRW formation, resulting in steady, frictionally dominated DSW descent. For slopes of intermediate steepness, the overflow becomes unstable and generates TRWs, accompanied by interfacial form stresses that drive DSW downslope relatively rapidly. For gentle slopes, the TRWs lead to the formation of coherent eddies that inhibit downslope DSW transport. These findings may explain the variable properties of TRWs observed in oceanic overflows, and they imply that the rate at which DSW descends to the abyssal ocean depends sensitively on the manifestation of TRWs and/or nonlinear eddies over the continental slope.more » « less
-
Abstract The Antarctic continental shelf (ACS) hosts processes that impact the climate system globally, which has motivated ongoing efforts to characterize its state, circulation, and variability. However, the nature and consequences of eddies over the ACS, and their contributions to the budgets of heat and freshwater, remain systematically understudied. This study uses hydrographic measurements collected from instrumented seals, supported by a high‐resolution model of the southern Weddell Sea, to characterize eddies and their role in vertical heat transport around the entire ACS. A key finding is that eddies are ubiquitous, and exhibit frequent (2%–10% of hydrographic casts) occurrences of bulk Richardson numbers, indicative of submesoscale variability. However, along‐track density power spectra exhibit wavenumber dependences of , consistent with quasigeostrophic turbulence. Approximately of the points in the surface mixed layer satisfy conditions favorable for symmetric instability, although its prevalence is likely higher than this due to the relatively coarse resolution of the seal tracks. Vertical heat transports, estimated from a regional model‐calibrated parameterization of submesoscale restratification, are largest in shelf regions hosting dense water, which have previously been identified as key sites of warm water intrusions onto the ACS. These regions also exhibit the largest seasonal cycles, with elevated winter eddy activity and heat fluxes accompanying the formation of high salinity shelf waters. These findings indicate that eddies may contribute substantially to ACS heat and tracer budgets, and motivate further study of their role in determining the pathways and fate of heat that intrudes onto the ACS.more » « less
-
Abstract Basal melting of Antarctic ice shelves is primarily driven by heat delivery from warm Circumpolar Deep Water. Here we classify near-shelf water masses in an eddy-resolving numerical model of the Southern Ocean to develop a unified view of warm water intrusion onto the Antarctic continental shelf. We identify four regimes on seasonal timescales. In regime 1 (East Antarctica), heat intrusions are driven by easterly winds via Ekman dynamics. In regime 2 (West Antarctica), intrusion is primarily determined by the strength of a shelf-break undercurrent. In regime 3, the warm water cycle on the shelf is in antiphase with dense shelf water production (Adélie Coast). Finally, in regime 4 (Weddell and Ross seas), shelf-ward warm water inflow occurs along the western edge of canyons during periods of dense shelf water outflow. Our results advocate for a reformulation of the traditional annual-mean regime classification of the Antarctic continental shelf.more » « less
-
Abstract The Antarctic Slope Current (ASC) is a coherent circulation feature that rings the Antarctic continental shelf and regulates the flow of water toward the Antarctic coastline. The structure and variability of the ASC influences key processes near the Antarctic coastline that have global implications, such as the melting of Antarctic ice shelves and water mass formation that determines the strength of the global overturning circulation. Recent theoretical, modeling, and observational advances have revealed new dynamical properties of the ASC, making it timely to review. Earlier reviews of the ASC focused largely on local classifications of water properties of the ASC's primary front. Here we instead provide a classification of the current's frontal structure based on the dynamical mechanisms that govern both the along‐slope and cross‐slope circulation; these two modes of circulation are strongly coupled, similar to the Antarctic Circumpolar Current. Highly variable motions, such as dense overflows, tides, and eddies are shown to be critical components of cross‐slope and cross‐shelf exchange, but understanding of how the distribution and intensity of these processes will evolve in a changing climate remains poor due to observational and modeling limitations. Results linking the ASC to larger modes of climate variability, such as El Niño, show that the ASC is an integral part of global climate. An improved dynamical understanding of the ASC is still needed to accurately model and predict future Antarctic sea ice extent, the stability of the Antarctic ice sheets, and the Southern Ocean's contribution to the global carbon cycle.more » « less
An official website of the United States government

